
Crest
Release 4.17

Wave Harmonic & Contributors

Apr 13, 2023

ABOUT

1 Introduction 1
1.1 Sponsorship . 1
1.2 Social . 1

2 Known Issues 3
2.1 Unity Bugs . 3
2.2 Prefab Mode Not Supported . 3

3 Roadmap 5

4 Release Notes 7

5 Initial Setup 9
5.1 Requirements . 9
5.2 Importing Crest files into project . 10

5.2.1 Pipeline Setup . 10
5.2.2 Importing Crest . 10

5.3 Adding Crest to a Scene . 12
5.4 Frequent Setup Issues . 12

5.4.1 Errors present, or visual issues . 12
5.4.2 Compile errors in the log, not possible to enter play mode, visual issues in the scene 12
5.4.3 Possible to enter play mode, but errors appear in the log at runtime that mention missing

‘kernels’ . 13
5.4.4 Ocean framerate low in edit mode . 13
5.4.5 Ocean reflections/lighting/fog looks wrong HDRP . 13
5.4.6 Changes made in prefab mode are not reflected in the scene view 13

6 Quick Start Guide 15

7 Water Appearance 17
7.1 Material Parameters . 17

7.1.1 Normals . 17
7.1.2 Scattering . 17
7.1.3 Subsurface Scattering . 17
7.1.4 Shallow Scattering . 18
7.1.5 Reflection Environment . 18
7.1.6 Add Directional Light . 19
7.1.7 Procedural Skybox . 19
7.1.8 Foam . 19
7.1.9 Foam 3D Lighting . 19
7.1.10 Foam Bubbles . 20

i

7.1.11 Transparency . 20
7.1.12 Caustics . 20
7.1.13 Underwater . 20
7.1.14 Flow . 20

7.2 Lighting . 21
7.2.1 General . 21
7.2.2 Reflections . 22
7.2.3 Refractions . 23

7.3 Foam . 24
7.3.1 Overview . 24
7.3.2 User Inputs . 24
7.3.3 Simulation Settings . 24

7.4 Shadows . 25
7.5 Custom Albedo . 26

7.5.1 Overview . 26
7.5.2 User Inputs . 27

7.6 Orthographic Projection . 27
7.7 Ocean Construction Parameters . 27
7.8 Advanced Ocean Parameters . 28

8 Water Inputs 29
8.1 Input Modes . 29

8.1.1 Spline Mode . 29
8.1.2 Renderer Mode . 29

9 Water Exclusion 31
9.1 Clip Surface . 31

9.1.1 Simulation Settings . 31
9.1.2 User Inputs . 31

9.2 Mask Underwater . 32

10 Waves 33
10.1 Environmental Waves . 33

10.1.1 Wave Conditions . 34
10.1.2 Wave Placement . 34
10.1.3 Wave Manipulation . 34
10.1.4 Advanced Settings . 35

10.2 Dynamic Waves . 36
10.2.1 Overview . 36
10.2.2 Adding Interaction Forces . 36
10.2.3 Simulation Settings . 37
10.2.4 User Inputs . 37

11 Oceans, Rivers and Lakes 39
11.1 Oceans . 39
11.2 Lakes . 39
11.3 Rivers . 40

12 Shorelines and Shallows 41
12.1 Sea Floor Depth . 41

12.1.1 Setup . 42
12.1.2 Shoreline Foam . 42
12.1.3 Troubleshooting . 42

12.2 Shoreline Waves . 43

ii

13 Tides and Currents 45
13.1 Flow . 45

13.1.1 Overview . 45
13.1.2 User Inputs . 45

13.2 Tides . 45

14 Underwater 47
14.1 Underwater Renderer . 48

14.1.1 Setup . 48
14.1.2 Parameters . 48
14.1.3 Detecting Above or Below Water . 49
14.1.4 Portals & Volumes . 49
14.1.5 Underwater Shader API . 49

14.2 Underwater Curtain BIRP URP . 51
14.2.1 Setup . 52

14.3 Underwater Post-Process HDRP . 52
14.3.1 Setup . 52

15 Collision Shape and Buoyancy Physics 53
15.1 Collision Shape . 53

15.1.1 Collision API Usage . 53
15.1.2 Compute Shape Queries (GPU) . 54
15.1.3 Baked FFT Data (CPU) . 54
15.1.4 Gerstner Waves CPU . 55

15.2 Buoyancy . 55

16 Time Control 57
16.1 Supporting Pause . 57
16.2 Network Synchronisation . 57
16.3 Timelines and Cutscenes . 58

17 Open Worlds 59
17.1 Floating Origin . 59

17.1.1 Stable World Shifts . 59

18 Watercraft 61
18.1 Boats . 61

18.1.1 Adding Boats . 61
18.1.2 Adding Buoyancy . 62
18.1.3 Adding Wakes . 62
18.1.4 Removing Water From Inside Boat . 62

19 Performance Guide 63
19.1 Quality parameters . 63
19.2 Mobile Performance . 63

20 System Notes 65
20.1 Core Data Structure . 65
20.2 Implementation Notes . 68

21 Rendering Notes 69
21.1 Transparency . 69

21.1.1 Transparent Object In Front Of Ocean Surface . 69
21.1.2 Transparent Object Behind The Ocean Surface . 69
21.1.3 Transparent Object Underwater . 69

iii

21.2 Render Order BIRP URP . 70

22 Frequently Asked Questions 71

iv

CHAPTER

ONE

INTRODUCTION

Crest is a technically advanced ocean system for Unity.

It is architected for performance and makes heavy use of Level Of Detail (LOD) strategies and GPU acceleration for
fast update and rendering. It is also highly flexible and allows any custom input to the water shape/foam/dynamic
waves/etcetera, and has an intuitive and easy to use shape authoring interface.

This documentation is for Crest 4.17 and targets BIRP (Built-in Render Pipeline).

You can view this documentation online.

This documentation is for Crest 4.17 and targets HDRP (High Definition Render Pipeline).

You can view this documentation online.

This documentation is for Crest 4.17 and targets URP (Universal Render Pipeline).

You can view this documentation online.

1.1 Sponsorship

Sponsor

Sponsor Wave Harmonic on GitHub Sponsors to increase development time on Crest.

Throughout the documentation, you will see sponsor admonitions like this one for features where only expanded funding
can help cover development costs.

Sponsor Us

1.2 Social

• YouTube https://www.youtube.com/channel/UC7_ZKKCXZmH64rRZqe-C0WA

• Twitter https://twitter.com/@crest_ocean

• Discord https://discord.gg/g7GpjDC

1

https://crest.readthedocs.io/en/4.17?rp=birp
https://crest.readthedocs.io/en/4.17/?rp=hdrp
https://crest.readthedocs.io/en/4.17/?rp=urp
https://github.com/sponsors/wave-harmonic?o=esb
https://github.com/sponsors/wave-harmonic?o=esb
https://www.youtube.com/channel/UC7_ZKKCXZmH64rRZqe-C0WA
https://twitter.com/@crest_ocean
https://discord.gg/g7GpjDC

Crest, Release 4.17

2 Chapter 1. Introduction

CHAPTER

TWO

KNOWN ISSUES

We keep track of issues on GitHub for all pipelines. Please see the following links:

• Issues on GitHub.

• BIRP specific issues on GitHub.

• HDRP specific issues on GitHub.

• URP specific issues on GitHub.

If you discover a bug, please open a bug report or mention it on the bugs channel on our Discord.

2.1 Unity Bugs

There are some Unity issues that affect Crest. Some of these may even be blocking new features from being developed.
If you could vote on these issues, that would be greatly appreciated:

• Gizmos render over opaque objects with Post-Processing stack. BIRP

2.2 Prefab Mode Not Supported

Crest does not support running in prefab mode which means dirty state in prefab mode will not be reflected in the scene
view. Save the prefab to see the changes.

3

https://github.com/wave-harmonic/crest/issues
https://github.com/wave-harmonic/crest/issues?q=is%3Aopen+label%3Abug+label%3ABIRP
https://github.com/wave-harmonic/crest/issues?q=is%3Aopen+label%3Abug+label%3AHDRP
https://github.com/wave-harmonic/crest/issues?q=is%3Aopen+label%3Abug+label%3AURP
https://github.com/wave-harmonic/crest/issues/new/choose
https://discord.com/channels/559866092546424832/1025347180468387860
https://issuetracker.unity3d.com/product/unity/issues/guid/1124862

Crest, Release 4.17

4 Chapter 2. Known Issues

CHAPTER

THREE

ROADMAP

Sponsor

This will help us expand our roadmap and achieve goals sooner. Certain sponsor tiers allows one to vote on roadmap
items to guide our priorities.

Sponsor Us

Visit our roadmap to see where Crest’s development is heading:

Trello Board

5

https://github.com/sponsors/wave-harmonic?o=esb
https://trello.com/b/L7iejCPI
https://trello.com/b/L7iejCPI

Crest, Release 4.17

6 Chapter 3. Roadmap

CHAPTER

FOUR

RELEASE NOTES

4.17

Changed

• Reorganise documentation to make things easier to find.

• Reduce Water Body material override feature leaking outside of water bodies.

• No longer execute when editor is inactive (ie out of focus) to prevent edge cases where memory leaks can occur
and to save energy.

• Improve Water Body gizmo by adding a wireframe.

• Use Register Height Input in Boat scene instead of Register Animated Waves Input.

• Rate limit shadow simulation to Ocean Renderer > Editor Mode FPS.

• Move Ocean Renderer debug options into foldout.

• Release Ocean Renderer resources in OnDestroy instead of OnDisable to prevent performance penality of re-
building the system. The option Debug > Destroy Resources In On Disable will revert this behaviour if needed.

• Make Ocean Depth Cache depth relative. This benefits baked depth caches by allowing them to be moved after
baking providing the contents are moved with it.

• Add Update Saved Cache File button to Ocean Depth Cache.

• Automatically set Ocean Depth Cache to Baked and set texture after baking.

• Show Crest version on Ocean Renderer.

• Add helpbox to Floating Origin directing users to documentation for solving potential popping issues.

• Improve spacing for spectrum power slider labels.

• Ramp planar reflection distortion with distance using the new Planar Reflections Distortion Distance Factor
material property. BIRP URP

7

Crest, Release 4.17

Fixed

• Reduce GC (Garbage Collector) allocations when using ShapeFFT or ShapeGerstner. To not have per frame
GC allocations, ensure Spectrum Fixed At Runtime is enabled.

• Remove or reduce several runtime GC allocations.

• Remove several editor GC allocations.

• Fix culling and performance issues in edit mode when using RegisterHeightInput, RegisterAnimWavesInput or
Whirlpool.

• Fix gizmos not drawing for inputs when using an attached renderer.

• Fix potential cases where water tiles were being culled incorrectly.

• Fix Sphere Water Interaction not working in builds.

• Fix larger waves not blending out when using wave blending.

• Fix “shader_feature keyword ‘\’ is not started with a letter or underscore, ignoring the whole line.” shader com-
pilation warning. BIRP

• Actually fix “shadow simulation executing for all cameras”. BIRP

• Fix scene camera “CopyTexture” errors and warnings when using PPv2 with Underwater Renderer.

• Fix Scatter Colour Shadow only having a minimal effect and/or causing an outline in shadowed areas. HDRP

• Fix motion vectors popping when camera height changes. HDRP

• Fix motion vectors popping on first frame. HDRP

• Fix Ocean Shader Graph features (eg shadows) from jittering on camera move for Unity 2021.2+. HDRP

• Fix Underwater Renderer compatibility with depth prepass. URP

• Fix Underwater Renderer not working with multiple cameras in certain cases. URP

• Fix rendering artifacts when Windows Graphics API is set to Direct3D11 and the Android Graphics API is set
to Vulkan. URP

• Fix Ocean Planar Reflections capturing reflections from only one viewpoint when used with multiple cameras
in builds. URP

• Fix shadow simulation breaking cameras that use StereoTargetEyeMask when XR SPI (Single-Pass Instanced)
is enabled. URP

• Check correct URP asset when doing validation to prevent possible exceptions or erroneous validation. URP

• Fix shader compilation errors from BIRP shaders being previously included in package. HDRP URP

• Fix Ocean material texture properties not binding on some platforms (PS5). BIRP URP

Performance

• Improve water tile culling significantly. The bounds for each tile are normally expanded to accommodate mesh
displacement (to prevent culling), but they were much larger than required in many cases leading to reduced
culling hits which is no longer the case.

• Reduce the amount of displacement queries LOD inputs make significantly making performance more scalable.

• Optimise LOD inputs cost per frame when used with a Renderer.

• Minor performance optimisations.

8 Chapter 4. Release Notes

CHAPTER

FIVE

INITIAL SETUP

This section has steps for importing the Crest content into a project, and for adding a new ocean surface to a scene.

Warning: When changing Unity versions, setting up a render pipeline or making changes to packages, the project
can appear to break. This may manifest as spurious errors in the log, no ocean rendering, magenta materials, scripts
unassigned in example scenes, etcetera. Often, restarting the Editor fixes it. Clearing out the Library folder can
also help to reset the project and clear temporary errors. These issues are not specific to Crest, but we note them
anyway as we find our users regularly encounter them.

To augment / complement this written documentation we published a video available here:

BIRP

https://www.youtube.com/watch?v=qsgeG4sSLFw

Fig. 5.1: Getting Start with Crest for BIRP

HDRP

https://www.youtube.com/watch?v=FE6l39Lt3js

Fig. 5.2: Getting Start with Crest for HDRP

URP

https://www.youtube.com/watch?v=TpJf13d_-3E

Fig. 5.3: Getting Start with Crest for URP

5.1 Requirements

• Unity Version: 2020.3.40

• Shader compilation target 4.5 or above

• Crest does not support OpenGL or WebGL backends

BIRP

• The Crest example content uses the post-processing package (for aesthetic reasons). If this is not present in your
project, you will see an unassigned script warning which you can fix by removing the offending script.

HDRP

9

Crest, Release 4.17

• The minimum HDRP package version is 10.10

URP

• The minimum URP package version is 10.10

5.2 Importing Crest files into project

The steps to set up Crest in a new or existing project are as follows:

5.2.1 Pipeline Setup

BIRP

Ensure that BIRP is setup and functioning, either by setting up a new project using the BIRP template or by configuring
your current project. This is beyond the scope of this documentation so please see the Unity documentation for more
information.

Switch to Linear space rendering under Edit→ Project Settings→ Player→Other Settings. If your platform(s) require
Gamma space, the material settings will need to be adjusted to compensate. Please see the Unity documentation for
more information.

HDRP

Ensure that HDRP is setup and functioning, either by setting up a new project using the HDRP template or by config-
uring your current project. This is beyond the scope of this documentation so please see the Unity documentation for
more information.

URP

Ensure that URP is setup and functioning, either by setting up a new project using the URP template or by configuring
your current project. This is beyond the scope of this documentation so please see the Unity documentation for more
information.

Switch to Linear space rendering under Edit→ Project Settings→ Player→Other Settings. If your platform(s) require
Gamma space, the material settings will need to be adjusted to compensate. Please see the Unity documentation for
more information.

5.2.2 Importing Crest

Import the Crest package into project using the Asset Store window in the Unity Editor.

Note: The files under Crest-Examples are not required by our core functionality, but are provided for illustrative
purposes. We recommend first time users import them as they may provide useful guidance.

BIRP

Import Crest assets by either:

• Currently we do not prepare release packages. However, we do tag each asset store version, so the zip corre-
sponding to each version can be downloaded by clicking the desired version on the Releases page.

• Getting latest by either cloning this repository or downloading it as a zip, and copying the Crest/Assets/Crest/Crest
folder into your project. Be sure to always copy the .meta files.

10 Chapter 5. Initial Setup

https://docs.unity3d.com/2020.3/Documentation/Manual//built-in-render-pipeline.html
https://docs.unity3d.com/2020.3/Documentation/Manual/LinearRendering-LinearOrGammaWorkflow.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Getting-started-with-HDRP.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.10/manual/InstallingAndConfiguringURP.html
https://docs.unity3d.com/2020.3/Documentation/Manual/LinearRendering-LinearOrGammaWorkflow.html
GitHubLink/archive/master.zip

Crest, Release 4.17

Note: The Crest/Assets/Crest/Development folder is only used to develop Crest and should be skipped.

URP

Transparency

To enable the water surface to be transparent, two options must be enabled in the URP configuration. To find the
configuration, open Edit/Project Settings/Graphics and double click the Scriptable Render Pipeline Settings field to
open the render pipeline settings. This field will be populated if URP was successfully installed.

After double clicking the graphics settings should appear in the Inspector. Transparency requires the following two
options to be enabled, Depth Texture and Opaque Texture:

Note: If you are using the underwater effect, it is recommended to set Opaque Downsampling to None. Opaque Down-
sampling will make everything appear at a lower resolution when underwater. Be sure to test to see if recommendation
is suitable for your project.

Read Unity’s documentation on the URP Asset for more information on these options.

Tip: If you are starting from scratch we recommend creating a project using a template in the Unity Hub.

5.2. Importing Crest files into project 11

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.10/manual/universalrp-asset.html#general
https://docs.unity3d.com/2020.3/Documentation/Manual/ProjectTemplates.html

Crest, Release 4.17

5.3 Adding Crest to a Scene

The steps to add an ocean to an existing scene are as follows:

• Create a new GameObject for the ocean, give it a descriptive name such as Ocean.

– Assign the OceanRenderer component to it. This component will generate the ocean geometry and do all
required initialisation.

– Assign the desired ocean material to the OceanRenderer script - this is a material using the Crest/Ocean
shader.

– Set the Y coordinate of the position to the desired sea level.

• Tag a primary camera as MainCamera if one is not tagged already, or provide the Camera to the View Camera
property on the OceanRenderer script. If you need to switch between multiple cameras, update the ViewCamera
field to ensure the ocean follows the correct view.

• Be sure to generate lighting if necessary. The ocean lighting takes the ambient intensity from the baked spherical
harmonics. It can be found at the following:

Window → Rendering → Lighting Settings → Debug Settings → Generate Lighting

Tip: You can check Auto Generate to ensure lighting is always generated.

• To add waves, create a new GameObject and add the Shape FFT component. See Waves section for customisa-
tion.

• Any ocean seabed geometry needs set up to register it with Crest. See section Shorelines and Shallows.

• If the camera needs to go underwater, the underwater effect must be configured. See section Underwater for
instructions.

5.4 Frequent Setup Issues

The following are kinks or bugs with the install process which come up frequently.

5.4.1 Errors present, or visual issues

Try restarting Unity as a first step.

5.4.2 Compile errors in the log, not possible to enter play mode, visual issues in
the scene

Verify that render pipeline is installed and enabled in the settings. See the follow for documentation:

Upgrading to HDRP

Installing URP into a project

12 Chapter 5. Initial Setup

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Upgrading-To-HDRP.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.10/manual/InstallURPIntoAProject.html

Crest, Release 4.17

5.4.3 Possible to enter play mode, but errors appear in the log at runtime that men-
tion missing ‘kernels’

Recent versions of Unity have a bug that makes shader import unreliable. Please try reimporting the Crest/Shaders
folder using the right click menu in the project view. Or simply close Unity, delete the Library folder and restart which
will trigger everything to reimport.

5.4.4 Ocean framerate low in edit mode

By default, the update speed is intentionally throttled by Unity to save power when in edit mode. To enable real-time
update, enable Animated Materials in the Scene View toggles:

See the Unity Documentation for more information.

5.4.5 Ocean reflections/lighting/fog looks wrong HDRP

If reflections appear wrong, it can be useful to make a simple test shadergraph with our water normal map applied to it,
to compare results. We provide a simple test shadergraph for debugging purposes - enable the Apply test material debug
option on the OceanRenderer component to apply it. If you find you are getting good results with a test shadergraph
but not with our ocean shader, please report this to us.

5.4.6 Changes made in prefab mode are not reflected in the scene view

Crest does not support running in prefab mode which means dirty state in prefab mode will not be reflected in the scene
view. Save the prefab to see the changes.

5.4. Frequent Setup Issues 13

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

14 Chapter 5. Initial Setup

CHAPTER

SIX

QUICK START GUIDE

This section provides a summary of common steps for setting up water with links for further reading:

• Add water: Add Crest water to your scene as described in section Adding Crest to a Scene.

• Ocean surface appearance: The active ocean material is displayed below the OceanRenderer component. The
material parameters are described in section Material Parameters. Turn off unnecessary features to maximize
performance.

• Add Waves: Add Shape FFT component to a GameObject and assign a Ocean Wave Spectrum asset. Waves can
be generated everywhere, or in specific areas by placing them on a Spline. See section Waves.

• Shallow Water: To reduce waves in shallow water capture the underlying terrain shape into a Ocean Depth
Cache. See section Shorelines and Shallows.

• Oceans, Rivers and Lakes: Crest supports setting up networks of connected water bodies, by setting the sea
level via Spline inputs. See section Oceans, Rivers and Lakes.

• Underwater: If the camera needs to go underwater, the underwater effect must be enabled. See section Under-
water.

• Dynamic wave simulation: Simulates dynamic effects like object-water interaction. See section Dynamic
Waves.

• Boats: Several components combined can create a convincing boat. See page Watercraft.

• Networking: Crest is built with networking in mind and can synchronise waves across the network. It also has
limited support for headless servers. See section Network Synchronisation.

• Open Worlds: Crest comes with ‘floating origin’ support to enable large open worlds. See section Floating
Origin.

Tip: By default, the update speed is intentionally throttled by Unity to save power when in edit mode. To enable
real-time update, enable Animated Materials in the Scene View toggles:

See the Unity Documentation for more information.

15

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

16 Chapter 6. Quick Start Guide

CHAPTER

SEVEN

WATER APPEARANCE

7.1 Material Parameters

7.1.1 Normals

Overall Normal Strength Strength of the final surface normal (includes both wave normal and normal map)
Use Normal Map Whether to add normal detail from a texture. Can be used to add visual detail to the water surface
BIRP URP
Normal Map Normal map and caustics distortion texture (should be set to Normals type in the properties)
Normal Map Scale Scale of normal map texture
Normal Map Strength Strength of normal map influence

7.1.2 Scattering

Scatter Colour Base Base colour when looking straight down into water.
Scatter Colour Grazing Base colour when looking into water at shallow/grazing angle. BIRP URP
Enable Shadowing Changes colour in shadow. Requires ‘Create Shadow Data’ enabled on OceanRenderer script.
BIRP URP
Scatter Colour Shadow Base colour in shadow. Requires ‘Create Shadow Data’ enabled on OceanRenderer script.

7.1.3 Subsurface Scattering

Enable Whether to to emulate light scattering through the water volume. BIRP URP
SSS Tint Colour tint for primary light contribution.
SSS Intensity Base Amount of primary light contribution that always comes in.
SSS Intensity Sun Primary light contribution in direction of light to emulate light passing through waves.
SSS Sun Falloff Falloff for primary light scattering to affect directionality.

17

Crest, Release 4.17

7.1.4 Shallow Scattering

Deprecated

Shallow Scattering will be removed in a future version. A properly tweaked Depth Fog Density achieves better results
at lower cost. Consider copying over the value from our materials.

The water colour can be varied in shallow water (this requires a depth cache created so that the system knows which
areas are shallow, see section Shorelines and Shallows).

Enable Enable light scattering in shallow water. BIRP URP
Scatter Colour Shallow Scatter colour used for shallow water.
Scatter Colour Depth Max Maximum water depth that is considered ‘shallow’, in metres. Water that is deeper than
this depth is not affected by shallow colour.
Scatter Colour Depth Falloff Falloff of shallow scattering, which gives control over the appearance of the transition
from shallow to deep.
Scatter Colour Shallow Shadow Shallow water colour in shadow (see comment on Shadowing param above). BIRP
URP

7.1.5 Reflection Environment

Specular Strength of specular lighting response.
Occlusion Strength of reflection. HDRP
Smoothness Smoothness of surface. HDRP URP
Vary Smoothness Over Distance Helps to spread out specular highlight in mid-to-background. From a theory point
of view, models transfer of normal detail to microfacets in BRDF. URP
Smoothness Far Material smoothness at far distance from camera. HDRP URP
Smoothness Far Distance Definition of far distance. HDRP URP
Smoothness Falloff How smoothness varies between near and far distance. HDRP URP
Roughness Controls blurriness of reflection BIRP
Softness Acts as mip bias to smooth/blur reflection. URP
Light Intensity Multiplier Main light intensity multiplier. URP
Fresnel Power Controls harshness of Fresnel behaviour. BIRP URP
Refractive Index of Air Index of refraction of air. Can be increased to almost 1.333 to increase visibility up through
water surface. BIRP URP

Deprecated
The Refractive Index of Air property will be removed in a future version.

Refractive Index of Water Index of refraction of water. Typically left at 1.333.
Planar Reflections Dynamically rendered ‘reflection plane’ style reflections. Requires OceanPlanarReflection script
added to main camera. BIRP URP
Planar Reflections Distortion How much the water normal affects the planar reflection. BIRP URP
Override Reflection Cubemap Whether to use an overridden reflection cubemap (provided in the next property).
BIRP
Reflection Cubemap Override Custom environment map to reflect. BIRP

18 Chapter 7. Water Appearance

Crest, Release 4.17

7.1.6 Add Directional Light

Enable Add specular highlights from the the primary light. BIRP
Boost Specular highlight intensity. BIRP
Falloff Falloff of the specular highlights from source to camera. BIRP
Vary Falloff Over Distance Helps to spread out specular highlight in mid-to-background. BIRP
Far Distance Definition of far distance. BIRP
Falloff At Far Distance Same as “Falloff” except only up to “Far Distance”. BIRP

7.1.7 Procedural Skybox

Enable Enable a simple procedural skybox. Not suitable for realistic reflections, but can be useful to give control over
reflection colour - especially in stylized/non realistic applications. BIRP URP
Base Base sky colour. BIRP URP
Towards Sun Colour in sun direction. BIRP URP
Directionality Direction fall off. BIRP URP
Away From Sun Colour away from sun direction. BIRP URP

7.1.8 Foam

Enable Enable foam layer on ocean surface.
Foam Foam texture.
Foam Scale Foam texture scale.
Foam Feather Controls how gradual the transition is from full foam to no foam.
Foam Tint Colour tint for whitecaps / foam on water surface. BIRP URP
Light Scale Scale intensity of lighting. BIRP URP
Shoreline Foam Min Depth Proximity to sea floor where foam starts to get generated. BIRP URP
Foam Albedo Intensity Scale intensity of diffuse lighting. HDRP
Foam Emissive Intensity Scale intensity of emitted light. HDRP
Foam Smoothness Smoothness of foam material. HDRP

7.1.9 Foam 3D Lighting

Enable Generates normals for the foam based on foam values/texture and use it for foam lighting. BIRP URP
Foam Normal Strength Strength of the generated normals.
Specular Fall-Off Acts like a gloss parameter for specular response. BIRP URP
Specular Boost Strength of specular response. BIRP URP

7.1. Material Parameters 19

Crest, Release 4.17

7.1.10 Foam Bubbles

Foam Bubbles Color Colour tint bubble foam underneath water surface.
Foam Bubbles Parallax Parallax for underwater bubbles to give feeling of volume.
Foam Bubbles Coverage How much underwater bubble foam is generated.

7.1.11 Transparency

Enable Whether light can pass through the water surface. BIRP URP
Refraction Strength How strongly light is refracted when passing through water surface.
Depth Fog Density Scattering coefficient within water volume, per channel.

7.1.12 Caustics

Enable Approximate rays being focused/defocused on underwater surfaces.
Caustics Caustics texture.
Caustics Scale Caustics texture scale.
Caustics Texture Grey Point The ‘mid’ value of the caustics texture, around which the caustic texture values are
scaled.
Caustics Strength Scaling / intensity.
Caustics Focal Depth The depth at which the caustics are in focus.
Caustics Depth Of Field The range of depths over which the caustics are in focus.
Caustics Distortion Texture Texture to distort caustics. HDRP
Caustics Distortion Strength How much the caustics texture is distorted.
Caustics Distortion Scale The scale of the distortion pattern used to distort the caustics.

7.1.13 Underwater

Enable Whether the underwater effect is being used. This enables code that shades the surface correctly from
underneath. BIRP URP
Cull Mode Ordinarily set this to Back to cull back faces, but set to Off to make sure both sides of the surface draw if
the underwater effect is being used.

7.1.14 Flow

Example

Flow is demonstrated in the whirlpool example scene.

Enable Flow is horizontal motion in water. ‘Create Flow Sim’ must be enabled on the OceanRenderer to generate
flow data.

20 Chapter 7. Water Appearance

Crest, Release 4.17

7.2 Lighting

7.2.1 General

BIRP

Sponsor

Sponsoring us will help increase our development bandwidth which could work towards improving this feature.

Sponsor Us

Crest BIRP does not support additional lights due to bugs in the pipeline and performance concerns. Please see #382
and #383 for more details.

TODO

This section is a work in progress.

HDRP

As other shaders would, the ocean will get its lighting from the primary directional light (AKA sun). Like other mesh
renderers, this can be masked by setting the Rendering Layer Mask property on the Ocean Renderer. Please see the
HDRP documentation on light layers for more information on setup and usage.

But some lighting will come from the light set as the Primary Light on the Ocean Renderer. This includes the sub-
surface scattering colour.

Lighting can also be overriden with the Indirect Lighting Controller. Please see the HDRP documentation on volume
overrides for more information on setup and usage.

For the ocean to have lighting completely separate from everything else, you would need to do all of the above.

URP

Sponsor

Sponsoring us will help increase our development bandwidth which could work towards improving this feature.

Sponsor Us

TODO

This section is a work in progress.

7.2. Lighting 21

https://github.com/sponsors/wave-harmonic?o=esb
https://github.com/wave-harmonic/crest/pull/382
https://github.com/wave-harmonic/crest/pull/383
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Light-Layers.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Light-Layers.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Light-Layers.html
https://github.com/sponsors/wave-harmonic?o=esb

Crest, Release 4.17

7.2.2 Reflections

Reflections contribute hugely to the appearance of the ocean. The look of the ocean will dramatically changed based
on the reflection environment.

The Index of Refraction setting controls how much reflection contributes for different view angles.

BIRP

The base reflection comes from a one of these sources:

• Unity’s specular cubemap. This is the default and is the same as what is applied to glossy objects in the scene. It
will support reflection probes, as long as the probe extents cover the ocean tiles, which enables real-time update
of the reflection environment (see Unity documentation for more details).

• Override reflection cubemap. If desired a cubemap can be provided to use for the reflections. For best results
supply a HDR cubemap.

• Procedural skybox. Developed for stylized games, this is a simple approximation of sky colours that will give
soft results.

This base reflection can then be overridden by dynamic planar reflections. This can be used to augment the reflection
with 3D objects such as boat or terrain. This can be enabled by applying the Ocean Planar Reflections script to the
active camera and configuring which layers get reflected (don’t include the Water layer). This renders every frame by
default but can be configured to render less frequently. This only renders one view but also only captures a limited field
of view of reflections, and the reflection directions are scaled down to help keep them in this limited view, which can
give a different appearance. Furthermore ‘planar’ means the surface is approximated by a plane which is not the case
for wavey ocean, so the effect can break down. This method is good for capturing local objects like boats and etcetera.

A good strategy for debugging the use of Unity’s specular cubemap is to put another reflective/glossy object in the
scene near the surface, and verify that it is lit and reflects the scene properly. Crest tries to use the same inputs for
lighting/reflections, so if it works for a test object it should work for the water surface as well.

HDRP

Crest makes full use of the flexible lighting options in HDRP (it is lit the same as a shadergraph shader would be).

Planar Reflection Probes

HDRP comes with a Planar Reflection Probe feature which enables dynamic reflection of the environment at run-time,
with a corresponding cost. See Unity’s documentation on Planar Reflection Probes. At time of writing we used the
following steps:

• Create new GameObject

• Set the height of the GameObject to the sea level.

• Add the component from the Unity Editor menu using Component/Rendering/Planar Reflection Probe

• Set the extents of the probe to be large enough to cover everything that needs to be reflected. We recommend
starting large (1000m or more as a starting point).

• Ensure water is not included in the reflection by deselecting Water on the Culling Mask field

• Check the documentation linked above for details on individual parameters

HDRP’s planar reflection probe is very sensitive to surface normals and often ‘leaks’ reflections, for example showing
the reflection of a boat on the water above the boat. If you see these issues we recommend reducing the Overall Normal
Strength parameter on the ocean material.

22 Chapter 7. Water Appearance

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Planar-Reflection-Probe.html

Crest, Release 4.17

The planar reflection probe assumes the reflecting surface is a flat plane. This is not the case for for a wavey water
surface and this can also produce ‘leaky’ reflections. In such cases it can help to lower the reflection probe below sea
level slightly.

Screen-Space Reflections

HDRP has a separate setting for transparents to receive SSR (Screen-Space Reflections) and it is not enabled by default.
It is important that you understand the basics of HDRP before proceeding.

1. Enable Screen Space Refection and the Transparent sub-option in the Frame Settings.

2. Add and configure the SSR Volume Override

• Please learn how to use the Volume Framework before proceeding as covering this is beyond the scope of
our documentation:

https://www.youtube.com/watch?v=vczkfjLoPf8

Fig. 7.1: Adding Volumes to HDRP (Tutorial)

3. Enable Receives Screen-Space Reflections on the ocean material.

URP

The base reflection comes from a one of these sources:

• Unity’s specular cubemap. This is the default and is the same as what is applied to glossy objects in the scene. It
will support reflection probes, as long as the probe extents cover the ocean tiles, which enables real-time update
of the reflection environment (see Unity documentation for more details).

• Procedural skybox. Developed for stylized games, this is a simple approximation of sky colours that will give
soft results.

This base reflection can then be overridden by dynamic planar reflections. This can be used to augment the reflection
with 3D objects such as boat or terrain. This can be enabled by applying the Ocean Planar Reflections script to the
active camera and configuring which layers get reflected (don’t include the Water layer). This renders every frame by
default but can be configured to render less frequently. This only renders one view but also only captures a limited field
of view of reflections, and the reflection directions are scaled down to help keep them in this limited view, which can
give a different appearance. Furthermore ‘planar’ means the surface is approximated by a plane which is not the case
for wavey ocean, so the effect can break down. This method is good for capturing local objects like boats and etcetera.

A good strategy for debugging the use of Unity’s specular cubemap is to put another reflective/glossy object in the
scene near the surface, and verify that it is lit and reflects the scene properly. Crest tries to use the same inputs for
lighting/reflections, so if it works for a test object it should work for the water surface as well.

7.2.3 Refractions

Refractions sample from the camera’s colour texture. Anything rendered in the transparent pass or higher will not be
included in refractions.

See Transparent Object In Front Of Ocean Surface for issues with Crest and other refractive materials.

7.2. Lighting 23

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Frame-Settings.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Override-Screen-Space-Reflection.html

Crest, Release 4.17

7.3 Foam

7.3.1 Overview

Crest simulates foam getting generated by choppy water (pinched) wave crests) and in shallow water to approximate
foam from splashes at shoreline. Each update (default is 30 updates per second), the foam values are reduced to model
gradual dissipation of foam over time.

To turn on this feature, enable the Create Foam Sim option on the OceanRenderer script, and ensure the Enable option
is ticked in the Foam group on the ocean material.

To configure the foam sim, create a Foam Sim Settings asset by right clicking the a folder in the Project window and
selecting Create/Crest/Foam Sim Settings, and assigning it to the OceanRenderer component in your scene.

7.3.2 User Inputs

Foam supports Spline Mode and Renderer Mode.

Crest supports inputing any foam into the system, which can be helpful for fine tuning where foam is placed. To place
foam, add some geometry into the world at the area where foam should be added. Then assign the RegisterFoamInput
script which will tag it for rendering into the shape, and apply a material with a shader of type Crest/Inputs/Foam/. . . .
See the DepositFoamTex object in the whirlpool.unity scene for an example.

The process for adding inputs is demonstrated in this Fig. 8.1.

The following input shaders are provided under Crest/Inputs/Foam:

• Add From Texture adds foam values read from a user provided texture. Can be useful for placing ‘blobs’ of
foam as desired, or can be moved around at runtime to paint foam into the sim.

• Add From Vert Colours can be applied to geometry and uses the red channel of vertex colours to add foam
to the sim. Similar in purpose to Add From Texture, but can be authored in a modelling workflow instead of
requiring at texture.

• Override Foam sets the foam to the provided value. Useful for removing foam from unwanted areas.

7.3.3 Simulation Settings

General Settings

• Foam Fade Rate - How quickly foam dissipates. Low values mean foam remains on surface for longer. This
setting should be balanced with the generation strength parameters below.

Wave foam / whitecaps

Crest detects where waves are ‘pinched’ and deposits foam to approximate whitecaps.

• Wave Foam Strength - Scales intensity of foam generated from waves. This setting should be balanced with the
Foam Fade Rate setting.

• Wave Foam Coverage - How much of the waves generate foam. Higher values will lower the threshold for foam
generation, giving a larger area.

24 Chapter 7. Water Appearance

Crest, Release 4.17

Shoreline foam

If water depth input is provided to the system (see Sea Floor Depth section below), the foam sim can automatically
generate foam when water is very shallow, which can approximate accumulation of foam at shorelines.

• Shoreline Foam Max Depth - Foam will be generated in water shallower than this depth. Controls how wide
the band of foam at the shoreline will be. Note that this is not a distance to shoreline, but a threshold on water
depth, so the width of the foam band can vary based on terrain slope. To address this limitation we allow foam
to be manually added from geometry or from a texture, see the next section.

• Shoreline Foam Strength - Scales intensity of foam generated in shallow water. This setting should be balanced
with the Foam Fade Rate setting.

Developer Settings

These settings should generally be left unchanged unless one is experiencing issues.

• Simulation Frequency - Frequency to run the foam sim, in updates per second. Lower frequencies can be more
efficient but may lead to visible jitter. Default is 30 updates per second.

7.4 Shadows

The shadow data consists of two channels. One is for normal shadows (hard shadow term) as would be used to block
specular reflection of the light. The other is a much softer shadowing value (soft shadow term) that can approximately
variation in light scattering in the water volume.

This data is captured from the shadow maps Unity renders before the transparent pass. These shadow maps are always
rendered in front of the viewer. The Shadow LOD Data then reads these shadow maps and copies shadow information
into its LOD textures.

BIRP

To turn on this feature, enable the Create Shadow Data option on the OceanRenderer script, and ensure the Shadowing
option is ticked on the ocean material.

HDRP

To turn on this feature, enable the Create Shadow Data option on the OceanRenderer script.

Specular (direct) lighting on the ocean surface is not shadowed by this data. It is shadowed by the pipeline. But we still
use the data to shadow anything not covered by the pipeline like caustic shadows.

To create this setup from scratch, the steps are the following.

1. On the HDRP asset (either the asset provided with Crest Assets/Crest/CrestExampleHDRPAsset, or the one used
in your project), ensure that Custom Pass is enabled.

2. Shadow maps must be enabled in the frame settings for the camera.

3. Enable shadowing in Crest. Enable Create Shadow Data on the OceanRenderer script.

4. On the same script, assign a Primary Light for the shadows. This light needs to have shadows enabled, if not an
error will be reported accordingly.

5. If desired the shadow sim can be configured by assigning a Shadow Sim Settings asset (Create/Crest/Shadow Sim
Settings).

7.4. Shadows 25

Crest, Release 4.17

URP

To turn on this feature, enable the Create Shadow Data option on the OceanRenderer script, and ensure the Shadowing
option is ticked on the ocean material.

To create this setup from scratch, the steps are the following.

1. In the shadow settings of the URP asset, ensure that shadow cascades are enabled. Crest requires cascades to be
enabled to obtain shadow information.

2. Enable shadowing in Crest. Enable Create Shadow Data on the OceanRenderer script.

3. On the same script, assign a Primary Light for the shadows. This light needs to have shadows enabled, if not an
error will be reported accordingly.

4. If desired the shadow sim can be configured by assigning a Shadow Sim Settings asset (Create/Crest/Shadow Sim
Settings).

5. Enable Shadowing on the ocean material to compile in the necessary shader code

The shadow sim can be configured by assigning a Shadow Sim Settings asset to the OceanRenderer script in your scene
(Create/Crest/Shadow Sim Settings). In particular, the soft shadows are very soft by default, and may not appear for
small/thin shadow casters. This can be configured using the Jitter Diameter Soft setting.

There will be times when the shadow jitter settings will cause shadows or light to leak. An example of this is when
trying to create a dark room during daylight. At the edges of the room the jittering will cause the ocean on the inside
of the room (shadowed) to sample outside of the room (not shadowed) resulting in light at the edges. Reducing the
Jitter Diameter Soft setting can solve this, but we have also provided a Register Shadow Input component which can
override the shadow data. This component bypasses jittering and gives you full control.

Shadows only supports the Renderer Mode.

7.5 Custom Albedo

7.5.1 Overview

The Albedo feature allows a colour layer to be composited on top of the water surface. This is useful for projecting
colour onto the surface.

This is somewhat similar to decals, except the colour only affects the water.

Note: HDRP has a Decal Projector feature that works with the water, and the effect is more configurable and may be
preferred over this feature. When using this feature be sure to enable Affects Transparent.

URP 2022 has a decal system but it does not support transparent surfaces like water.

There is a Render Alpha On Surface component which is an alternative. It behaves similar to a decal projector, but has
several issues like z-order issues.

26 Chapter 7. Water Appearance

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.10/manual/universalrp-asset.html#shadows
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Decal-Projector.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Decal-Projector.html#properties

Crest, Release 4.17

7.5.2 User Inputs

Note: Inputs only execute the first shader pass (pass zero). It is recommended to use unlit shader templates or unlit
Shader Graph (URP only) if not using one of ours. Shaders provided by Unity generally will not work as their primary
pass is not zero - even for unlit shaders.

Albedo only supports the Renderer Mode.

Any geometry or particle system can add colour to the water. It will be projected from a top down perspective onto the
water surface.

To tag GameObjects to render onto the water, attach the RegisterAlbedoInput component.

7.6 Orthographic Projection

Crest supports orthographic projection out-of-the-box, but it might require some configuration to get a desired appear-
ance.

Crest uses the camera’s position for the LOD system which can be awkward for orthographic which uses the size
property on the camera. Use the Viewpoint property on the Ocean Renderer to override the camera’s position.

Underwater effects do not currently support orthographic projection.

7.7 Ocean Construction Parameters

There are a small number of parameters that control the construction of the ocean shape and geometry:

• Lod Data Resolution - the resolution of the various ocean LOD data including displacement textures, foam
data, dynamic wave sims, etc. Sets the ‘detail’ present in the ocean - larger values give more detail at increased
run-time expense.

• Geometry Down Sample Factor - geometry density - a value of 2 will generate one vert per 2x2 LOD data
texels. A value of 1 means a vert is generated for every LOD data texel. Larger values give lower fidelity surface
shape with higher performance.

• Lod Count - the number of levels of detail / scales of ocean geometry to generate. The horizontal range of the
ocean surface doubles for each added LOD, while GPU processing time increases linearly. It can be useful to
select the ocean in the scene view while running in editor to inspect where LODs are present.

• Max Scale - the ocean is scaled horizontally with viewer height, to keep the meshing suitable for elevated view-
points. This sets the maximum the ocean will be scaled if set to a positive value.

• Min Scale - this clamps the scale from below, to prevent the ocean scaling down to 0 when the camera approaches
the sea level. Low values give lots of detail, but will limit the horizontal extents of the ocean detail. Increasing
this value can be a great performance saving for mobile as it will reduce draw calls.

7.6. Orthographic Projection 27

Crest, Release 4.17

7.8 Advanced Ocean Parameters

These parameters are found on the Ocean Renderer under the Advanced heading.

• Surface Self-Intersection Mode - How Crest should handle self-intersections of the ocean surface caused by
choppy waves which can cause a flipped underwater effect. When not using the portals/volumes, this fix is only
applied when within 2 metres of the ocean surface. Automatic will disable the fix if portals/volumes are used
and is the recommended setting.

• Underwater Cull Limit - Proportion of visibility below which ocean will be culled underwater. The larger the
number, the closer to the camera the ocean tiles will be culled.

28 Chapter 7. Water Appearance

CHAPTER

EIGHT

WATER INPUTS

Inputs provides a means for developers to control the various simulations powering Crest. The following video covers
the basics:

https://www.youtube.com/watch?v=sQIakAjSq4Y

Fig. 8.1: Basics of Adding Ocean Inputs

8.1 Input Modes

A number of components provide multiple authoring modes depending on other attached components.

8.1.1 Spline Mode

If a Spline component is present, then this mode is activated. It takes priority over all other modes.

This mode requires a Spline component to be present with at least two spline points added. Help boxes in the Inspector
serve to guide/automate this setup.

Once a Spline is created, this is used to drive the input. A common use of splines is to set the water level to follow a
riverbed using the RegisterHeightInput component. A spline may also be used to add waves or flow velocity, if this
gives the required level of fidelity. Another typical use case of splines is to add waves aligned to shorelines.

Relevant data components will automatically be added to spline points. For example if the spline is used with a Reg-
isterFlowInput component, the Spline Point Data Flow component will be added to spline points which can then be
used to configure the flow speed.

8.1.2 Renderer Mode

This is the most advanced type of input and allows rendering any geometry/shader into the water system data. One
could draw foam directly into the foam data, or inject a flow map baked from an offline sim.

This mode will activate if a Renderer is present. It will take priority except when a Spline is present.

The geometry can come from a MeshRenderer, or it can come from any Renderer component such as a TrailRenderer,
LineRenderer or ParticleSystem. This geometry will be rendered from a orthographic top down perspective to “print”
the data onto the water. For simple cases it is recommended to use an upwards facing quad for the best performance.

The Particle Renderer example in the Examples scene shows a particle system being projected onto the water surface.

29

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/MeshRenderer.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Renderer.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/TrailRenderer.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/LineRenderer.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/ParticleSystem.html

Crest, Release 4.17

Tip: Inputs only execute the first shader pass (pass zero). It is recommended to use unlit shader templates or unlit
Shader Graph (URP only) if not using one of ours.

The following shaders can be used with any ocean input:

• Scale By Factor scales the ocean data between zero and one inclusive. It is multiplicative, which can be inverted,
so zero becomes no data and one leaves the data unchanged.

30 Chapter 8. Water Inputs

CHAPTER

NINE

WATER EXCLUSION

Also referred to as clipping or masking, features detailed here can either exclude or include the surface and/or volume.

9.1 Clip Surface

https://www.youtube.com/watch?v=jXphUy__J0o

Fig. 9.1: Water Bodies and Surface Clipping

This data drives clipping of the ocean surface (has no effect on the volume), as in carving out holes. It is similar to
Unity’s Terrain Holes feature. This can be useful for hollow vessels or low terrain that goes below sea level. Data can
come from primitives (signed-distance), geometry (convex hulls) or a texture.

To turn on this feature, enable the Create Clip Surface Data option on the OceanRenderer script, and ensure the Enable
option is ticked in the Clip Surface group on the ocean material.

The data contains 0-1 values. Holes are carved into the surface when the value is greater than 0.5.

9.1.1 Simulation Settings

All of the settings below refer to the Clip Surface Sim Settings asset.

• Render Texture Graphics Format - The render texture format to use for the clip surface simulation. Consider
using higher precision (like R16_UNorm) if you are using Primitive mode for even more accurate clipping.

9.1.2 User Inputs

The Register Clip Surface Input input only supports the modes listed in the Mode dropdown.

Primitive Mode

Clip areas can be added using signed-distance primitives which produces accurate clipping and supports overlapping.
Add a RegisterClipSurfaceInput script to a GameObject and set Mode to Primitive. The position, rotation and dimen-
sions of the primitive is determined by the Transform. See the FloatingOpenContainer object in the boat.unity scene
for an example usage.

31

Crest, Release 4.17

Geometry Mode

Clip areas can be added by adding geometry that covers the desired hole area to the scene and then assigning the
RegisterClipSurfaceInput script and setting Mode to Geometry. See the RowBoat object in the main.unity scene for an
example usage.

To use other available shaders like ClipSurfaceRemoveArea or ClipSurfaceRemoveAreaTexture: create a material, as-
sign to renderer and disable Assign Clip Surface Material option. For the ClipSurfaceRemoveArea shaders, the geom-
etry should be added from a top-down perspective and the faces pointing upwards.

The following input shaders are provided under Crest/Inputs/Clip Surface:

• Convex Hull - Renders geometry into clip surface data taking all dimensions into account. An example use case
is rendering the convex hull of a vessel to remove the ocean surface from within it.

Example

See the RowBoat object in the main.unity scene for an example usage.

Note: Overlapping or adjacent meshes will not work correctly in most cases. There will be cases where one mesh
will overwrite another resulting in the ocean surface appearing where it should not. The mesh is rendered from
a top-down perspective. The back faces add clip surface data and the front faces remove from it which creates
the convex hull. With an overlapping mesh, the front faces of the sides of one mesh will clear the clipping data
creating by the other mesh. Overlapping boxes which are not rotated on the X or Z axes will work well whilst
spheres will have issues. Consider using Primitive mode which supports overlapping.

• Include Area - Removes clipping data so the ocean surface renders.

• Remove Area - Adds clipping data to remove the ocean surface.

• Remove Area Texture - Adds clipping data using a texture to remove the ocean surface.

9.2 Mask Underwater

The Portals & Volumes feature can remove both the water surface and the underwater volume. Otherwise, en-
able/disable the Underwater Renderer where needed.

32 Chapter 9. Water Exclusion

CHAPTER

TEN

WAVES

The Animated Waves simulation contains the animated surface shape. This typically contains the waves from shape
components, but can also contain waves from the ripple simulation. All waves will eventually be combined into this
simulation so the water shader only needs to sample once to animate vertices.

10.1 Environmental Waves

The ShapeFFT component is used to generate waves in Crest. To add waves, add the ShapeFFT component to a
GameObject.

For advanced situations where a high level of control is required over the wave shape, the ShapeGerstner component
can be used to add specific wave components. It can be especially useful for Trochoidal waves and shoreline waves.
See the Shoreline Waves section for more information on the latter.

The Shape Gerstner Batched component is deprecated.

Tip: It is useful to see the animated ocean surface while tweaking the wave conditions.

By default, the update speed is intentionally throttled by Unity to save power when in edit mode. To enable real-time
update, enable Animated Materials in the Scene View toggles:

See the Unity Documentation for more information.

33

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

10.1.1 Wave Conditions

The appearance and shape of the waves is determined by a Wave Spectrum. A default wave spectrum will be created
if none is specified. To author wave conditions, click the Create Asset button next to the Spectrum field. The resulting
spectrum can then be edited by expanding this field.

The spectrum can be freely edited in Edit mode, and is locked by default in Play mode to save evaluating the spectrum
every frame (this optimisation can be disabled using the Spectrum Fixed At Runtime toggle). The spectrum has sliders
for each wavelength to control contribution of different scales of waves. To control the contribution of 2m wavelengths,
use the slider labelled ‘2’. Note that the wind speed may need to be increased on the OceanRenderer component in
order for large wavelengths to be visible.

There is also control over how aligned waves are to the wind direction. This is controlled via the Wind Turbulence
control on the ShapeFFT component.

Another key control is the Chop parameter which scales the horizontal displacement. Higher chop gives crisper wave
crests but can result in self-intersections or ‘inversions’ if set too high, so it needs to be balanced.

To aid in tweaking the spectrum, we provide a standard empirical wave spectrum model from the literature, called
the ‘Pierson-Moskowitz’ model. To apply this model to a spectrum, select it in the Empirical Spectra section of the
spectrum editor which will lock the spectrum to this model. The model can be disabled afterwards which will unlock
the spectrum power sliders for hand tweaking.

Tip: Notice how the empirical spectrum places the power slider handles along a line. This is typical of real world wave
conditions which will have linear power spectrums on average. However actual conditions can vary significantly based
on wind conditions, land masses, etc, and we encourage experimentation to obtain visually interesting wave conditions,
or conditions that work best for gameplay.

The waves will be dampened/attenuated in shallow water if a Sea Floor Depth LOD data is used (see Sea Floor Depth).
The amount that waves are attenuated is configurable using the Attenuation In Shallows setting.

Together these controls give the flexibility to express the great variation one can observe in real world seascapes.

10.1.2 Wave Placement

Waves can be applied everywhere in the world, placed along or orthogonal to a spline, or injected via a custom shader.
See the Input Modes section for information about these authoring modes.

Shape components’ Renderer Mode has custom shaders under Crest/Inputs/Shape Waves:

• Sample Spectrum samples from the spectrum using a texture. The RG channels are the wave direction and
together they make the magnitude. The values are 0-1 where 0.5 is zero magnitude (ie no waves).

10.1.3 Wave Manipulation

The Animated Waves simulation can also be manipulated directly using a Register Animated Waves Input.

For the Register Animated Waves Input’s Renderer Mode, the following shaders are provided with Crest under the
shader category Crest/Inputs/Animated Waves:

• Scale By Factor scales the waves by a factor where zero is no waves and one leaves waves unchanged. Useful
for reducing waves.

• Add From Texture allows any kind of shape added to the surface from a texture. Can ether be a heightmap
texture (1 channel) or a 3 channel XYZ displacement texture.

34 Chapter 10. Waves

Crest, Release 4.17

• Push Water Under Convex Hull pushes the water underneath the geometry. Can be used to define a volume of
space which should stay ‘dry’.

• Wave Particle is a ‘bump’ of water. Many bumps can be combined to make interesting effects such as wakes for
boats or choppy water. Based loosely on http://www.cemyuksel.com/research/waveparticles/.

• Set Base Water Height Using Geometry allows the sea level (average water height) to be offset some amount.
The top surface of the geometry will provide the water height, and the waves will apply on top.

Deprecated

This shader is deprecated in favour using a Register Height Input.

• Set Water Height Using Geometry snaps the water surface to the top surface of the geometry. Will override
any waves.

Deprecated

This shader is deprecated in favour using a Register Height Input.

10.1.4 Advanced Settings

The environmental waves are termed Animated Waves in the Crest system and can be configured by assigning an
Animated Waves Sim Settings asset to the OceanRenderer script in your scene (Create → Crest → Animated Wave Sim
Settings).

All of the settings below refer to the Animated Waves Sim Settings asset.

• Attenuation In Shallows - How much waves are dampened in shallow water.

• Shallows Max Depth - Any water deeper than this will receive full wave strength. The lower the value, the less
effective the depth cache will be at attenuating very large waves. Set to the maximum value (1,000) to disable.

• Collision Source - Where to obtain ocean shape on CPU for physics / gameplay.

• Max Query Count - Maximum number of wave queries that can be performed when using ComputeShader-
Queries.

• Ping Pong Combine Pass - Whether to use a graphics shader for combining the wave cascades together. Dis-
abling this uses a compute shader instead which doesn’t need to copy back and forth between targets, but it may
not work on some GPUs, in particular pre-DX11.3 hardware, which do not support typed UAV loads. The fail
behaviour is a flat ocean.

• Render Texture Graphics Format - The render texture format to use for the wave simulation. Consider using
higher precision (like R32G32B32A32_SFloat) if you see tearing or wierd normals. You may encounter this
issue if you use any of the Set Water Height inputs.

10.1. Environmental Waves 35

http://www.cemyuksel.com/research/waveparticles/

Crest, Release 4.17

10.2 Dynamic Waves

10.2.1 Overview

Environmental/animated waves are ‘static’ in that they are not influenced by objects interacting with the water. ‘Dy-
namic’ waves are generated from a multi-resolution simulation that can take such interactions into account.

To turn on this feature, enable the Create Dynamic Wave Sim option on the OceanRenderer script, and to configure the
sim, create or assign a Dynamic Wave Sim Settings asset on the Sim Settings Dynamic Waves option.

The dynamic wave simulation is added on top of the animated FFT waves to give the final shape.

The dynamic wave simulation is not suitable for use further than approximately 10km from the origin. At this kind of
distance the stability of the simulation can be compromised. Use the FloatingOrigin component to avoid travelling far
distances from the world origin.

10.2.2 Adding Interaction Forces

Dynamic ripples from interacting objects can be generated by placing one or more spheres under the object to approx-
imate the object’s shape. To do so, attach one or more SphereWaterInteraction components to children with the object
and set the Radius parameter to roughly match the shape.

The following settings can be used to customise the interaction:

• Radius - The radius of the sphere from which the interaction forces are calculated.

• Weight - Strength of the effect. Can be set negative to invert.

• Weight Up Down Mul - Multiplier for vertical motion, scales ripples generated from a sphere moving up or
down.

• Inner Sphere Multiplier - Internally the interaction is modelled by a pair of nested spheres. The forces from
the two spheres combine to create the final effect. This parameter scales the effect of the inner sphere and can be
tweaked to adjust the shape of the result.

• Inner Sphere Offset - This parameter controls the size of the inner sphere and can be tweaked to give further
control over the result.

• Velocity Offset - Offsets the interaction position in the direction of motion. There is some latency between
applying a force to the wave sim and the resulting waves appearing. Applying this offset can help to ensure the
waves do not lag behind the sphere.

• Compensate For Wave Motion - If set to 0, the input will always be applied at a fixed position before any
horizontal displacement from waves. If waves are large then their displacement may cause the interactive waves
to drift away from the object. This parameter can be increased to compensate for this displacement and combat
this issue. However increasing too far can cause a feedback loop which causes strong ‘ring’ artifacts to appear
in the dynamic waves. This parameter can be tweaked to balance this two effects.

Non-spherical objects can be approximated with multiple spheres, for an example see the Spinner object in the
boat.unity example scene which is composed of multiple sphere interactions. The intensity of the interaction can be
scaled using the Weight setting. For an example of usages in boats, search for GameObjects with “InteractionSphere”
in their name in the boat.unity scene.

36 Chapter 10. Waves

Crest, Release 4.17

10.2.3 Simulation Settings

All of the settings below refer to the Dynamic Wave Sim Settings asset.

The key settings that impact stability of the simulation are the Damping and Courant Number settings described
below.

• Simulation Frequency - Frequency to run the dynamic wave sim, in updates per second. Lower frequencies can
be more efficient but may limit wave speed or lead to visible jitter. Default is 60 updates per second.

• Damping - How much energy is dissipated each frame. Helps sim stability, but limits how far ripples will
propagate. Set this as large as possible/acceptable. Default is 0.05.

• Courant Number - Stability control. Lower values means more stable sim, but may slow down some dynamic
waves. This value should be set as large as possible until sim instabilities/flickering begin to appear. Default is
0.7.

• Horiz Displace - Induce horizontal displacements to sharpen simulated waves.

• Displace Clamp - Clamp displacement to help prevent self-intersection in steep waves. Zero means unclamped.

• Gravity Multiplier - Multiplier for gravity. More gravity means dynamic waves will travel faster.

• Attenuation in Shallows - How much waves are dampened in shallow water.

The OceanDebugGUI script gives the debug overlay in the example content scenes and reports the number of sim steps
taken each frame.

10.2.4 User Inputs

Dynamic Waves only supports the Renderer Mode.

The recommended approach to injecting forces into the dynamic wave simulation is to use the SphereWaterInteraction
component as described above. This component will compute a robust interaction force between a sphere and the water,
and multiple spheres can be composed to model non-spherical shapes.

However for when more control is required custom forces can be injected directly into the simulation using the Renderer
input mode. The following input shader is provided under Crest/Inputs/Dynamic Waves:

• Add Bump adds a round force to pull the surface up (or push it down). This can be moved around to create
interesting effects.

10.2. Dynamic Waves 37

Crest, Release 4.17

38 Chapter 10. Waves

CHAPTER

ELEVEN

OCEANS, RIVERS AND LAKES

Preview

The features described in this section are in preview and may evolve in future versions.

11.1 Oceans

By default Crest generates an infinite body of water at a fixed sea level, suitable for oceans and very large lakes.

11.2 Lakes

Crest can be configured to efficiently generate smaller bodies of water, using the following mechanisms.

• The waves can be generated in a limited area - see the Spline Mode section.

• The WaterBody component, if present, marks areas of the scene where water should be present. It can be created
by attaching this component to a GameObject and setting the X/Z scale to set the size of the water body. If
gizmos are enabled an outline showing the size will be drawn in the Scene View.

• The WaterBody component turns off tiles that do not overlap the desired area. The Clip Surface feature can be
used to precisely remove any remaining water outside the intended area. Additionally, the clipping system can
be configured to clip everything by default, and then areas can be defined where water should be included. See
the Clip Surface section.

• If the lake altitude differs from the global sea level, create a spline that covers the area of the lake and attach the
RegisterHeightInput component which will set the water level to match the spline (or click the Set Height button
in the Spline inspector). It is recommended to cover a larger area than the lake itself, to give a protective margin
against LOD effects in the distance.

Example

The LakesAndRivers.unity scene contains an example of a lake connected by a river.

Another advantage of the WaterBody component is it allows an optional override material to be provided, to change the
appearance of the water. Since this feature cannot be applied partially to an ocean tile, and an ocean tile can overlap
two water bodies, this feature does not work well with bordering water bodies. If you use this feature and want to still
have an ocean, then disable Water Body Culling on the Ocean Renderer.

39

Crest, Release 4.17

11.3 Rivers

Splines can also be used to create rivers, by creating a spline at the water surface of the river, and attaching the following
components:

• RegisterHeightInput can be used to set the water level to match the spline.

• RegisterFlowInput can be used to make the water move along the spline.

• ShapeFFT can be used to generate waves that propagate along the river.

The Add Feature section of the Spline inspector has helper buttons to quickly add these components.

Example

The LakesAndRivers.unity scene contains an example of a river connecting two lakes.

40 Chapter 11. Oceans, Rivers and Lakes

CHAPTER

TWELVE

SHORELINES AND SHALLOWS

Crest requires water depth information to attenuate large waves in shallow water, to generate foam near shorelines,
and to provide shallow water shading. The way this information is typically generated is through the OceanDepth-
Cache component, which takes one or more layers, and renders everything in those layers (and within its bounds)
from a top-down orthographic view to generate a heightfield for the seabed. These layers could contain the render
geometry/terrains, or it could be geometry that is placed in a non-rendered layer that serves only to populate the depth
cache. By default this generation is done at run-time during startup, but the component exposes other options such as
generating offline and saving to an asset, or rendering on demand.

The seabed affects the wave simulation in a physical way - the rule of thumb is waves will be affected by the seabed
when the water depth is less than half of their wavelength. So for example when the water is 250m deep, this will start
to dampen 500m wavelengths from the spectrum, so it is recommended that the seabed drop down to at least 500m
away from islands so that there is a smooth transition between shallow and deep water without a ‘step’ in the sea floor
which appears as a discontinuity in the surface waves and/or a line of foam. Alternatively, there is Shallows Max Depth
on the Sim Settings Animated Waves asset which smooths the attenuation to a provided maximum depth where waves
will be at full strength.

12.1 Sea Floor Depth

This simulation stores information that can be used to calculate the water depth. Specifically it stores the terrain height,
which can then be differenced with the sea level to obtain the water depth. This water depth is useful information to the
system; it is used to attenuate large waves in shallow water, to generate foam near shorelines, and to provide shallow
water shading. It is calculated by rendering the render geometry in the scene for each LOD from a top down perspective
and recording the Y value of the surface.

The following will contribute to ocean depth:

• Objects that have the RegisterSeaFloorDepthInput component attached. These objects will render every frame.
This is useful for any dynamically moving surfaces that need to generate shoreline foam, etcetera.

• It is also possible to place world space depth caches as described above. The scene objects will be rendered into
this cache once, and the results saved. Once the cache is populated it is then copied into the Sea Floor Depth LOD
Data. The cache has a gizmo that represents the extents of the cache (white outline) and the near plane of the
camera that renders the depth (translucent rectangle). The cache should be placed at sea level and rotated/scaled
to encapsulate the terrain.

When the water is e.g. 250m deep, this will start to dampen 500m wavelengths, so it is recommended that the sea floor
drop down to around this depth away from islands so that there is a smooth transition between shallow and deep water
without a visible boundary.

41

Crest, Release 4.17

12.1.1 Setup

https://www.youtube.com/watch?v=jcmqUlboTUk

Fig. 12.1: Depth Cache usage and setup

One way to inform Crest of the seabed is to attach the RegisterSeaFloorDepthInput component. Crest will record the
height of these objects every frame, so they can be dynamic.

The main.unity example scene has an example of a cache set up around the island. The cache GameObject is called
IslandDepthCache and has a OceanDepthCache component attached. The following are the key points of its configu-
ration:

• The transform position X and Z are centered over the island

• The transform position y value is set to the sea level

• The transform scale is set to 540 which sets the size of the cache. If gizmos are visible and the cache is selected,
the area is demarcated with a white rectangle.

• The Camera Max Terrain Height is the max height of any surfaces above the sea level that will render into the
cache. If gizmos are visible and the cache is selected, this cutoff is visualised as a translucent gray rectangle.

• The Layers field contains the layer that the island is assigned to (Terrain in our project). Only objects in these
layer(s) will render into the cache.

• Both the transform scale (white rectangle) and the Layers property determine what will be rendered into the
cache.

By default the cache is populated in the Start() function. It can instead be configured to populate from script by setting
the Refresh Mode to On Demand and calling the PopulateCache() method on the component from script.

Once populated the cache contents can be saved to disk by clicking the Save cache to file button that will appear in the
Inspector in play mode. Once saved, the Type field can be set to Baked and the saved data can be assigned to the Saved
Cache field.

12.1.2 Shoreline Foam

Once the Sea Floor Depth is running, shoreline foam can be configured. See Shoreline foam section for more informa-
tion.

12.1.3 Troubleshooting

Crest runs validation on the depth caches - look for warnings/errors in the Inspector, and in the log at run-time, where
many issues will be highlighted. To run validation, click the Validate Setup button at the bottom of the OceanRenderer
component inspector.

To inspect the contents of the cache, look for a child GameObject parented below the cache with the name prefix Draw_.
It will have a material with a Texture property. By double clicking the icon to the right of this field, one can inspect the
contents of the cache. The cache will appear black for dry land and red for water that is at least 1m deep.

42 Chapter 12. Shorelines and Shallows

Crest, Release 4.17

12.2 Shoreline Waves

Modelling realistic shoreline waves efficiently is a challenging open problem. We discuss further and make suggestions
on how to set up shorelines using global waves with Crest in the following video.

https://www.youtube.com/watch?v=Y7ny8pKzWMk

Fig. 12.2: Tweaking Shorelines

Alternatively, using ShapeGerstner with a spline is an effective way to create shoreline waves. You will need to set
Reverse Wave Weight to zero to avoid waves also going in the opposite direction and set Blend Mode to Blend which
effectively overwrites existing waves to prevent global waves from interferring.

12.2. Shoreline Waves 43

Crest, Release 4.17

44 Chapter 12. Shorelines and Shallows

CHAPTER

THIRTEEN

TIDES AND CURRENTS

13.1 Flow

13.1.1 Overview

Flow is the horizontal motion of the water volumes. It does not affect wave directions, but transports the waves hori-
zontally. This horizontal motion also affects physics.

This can be used to simulate water currents and other waterflow.

Example

See the whirlpool.unity example scene where flow is used to rotate the waves and foam around the vortex.

13.1.2 User Inputs

Foam supports Spline Mode and Renderer Mode.

Crest supports adding any flow velocities to the system. To add flow, add some geometry into the world which when
rendered from a top down perspective will draw the desired displacements. Then assign the RegisterFlowInput script
which will tag it for rendering into the flow, and apply a material using one of the following shaders.

The following input shaders are provided under Crest/Inputs/Flow:

The Crest/Inputs/Flow/Add Flow Map shader writes a flow texture into the system. It assumes the x component of the
flow velocity is packed into 0-1 range in the red channel, and the z component of the velocity is packed into 0-1 range
in the green channel. The shader reads the values, subtracts 0.5, and multiplies them by the provided scale value on the
shader. The process of adding ocean inputs is demonstrated in Fig. 8.1.

13.2 Tides

It is possible to move the entire water surface on the Y axis to simulate tides.

45

Crest, Release 4.17

46 Chapter 13. Tides and Currents

CHAPTER

FOURTEEN

UNDERWATER

Crest supports seamless transitions above/below water. It can also have a meniscus which renders a subtle line at
the intersection between the camera lens and the water to visually help the transition. This is demonstrated in the
main.unity scene in the example content. The ocean in this scene uses the material Ocean-Underwater.mat which
enables rendering the underside of the surface.

Out-scattering is provided as an example script which reduces environmental lighting with depth underwater. See the
UnderwaterEnvironmentalLighting component.

For performance reasons, the underwater effect is disabled if the viewpoint is not underwater. Only the camera rendering
the ocean surface will be used.

Tip: Use opaque or alpha test materials for underwater surfaces. Transparent materials may not render correctly
underwater. See Transparent Object Underwater for possible workarounds.

47

Crest, Release 4.17

14.1 Underwater Renderer

Note: You can enable/disable rendering in the scene view by toggling fog in the scene view control bar.

The Underwater Renderer component executes a fullscreen underwater effect between the transparent pass and post-
processing pass.

It is similar to a post-processing effect, but has the benefit of allowing other renderers to execute after it and still receive
post-processing. An example is to add underwater fog correctly to semi-transparent objects.

This is the current underwater solution used for the example scenes, and is the simplest to setup.

14.1.1 Setup

BIRP

• Configure the ocean material for underwater rendering. In the Underwater section of the material params, ensure
Enabled is turned on and Cull Mode is set to Off so that the underside of the ocean surface renders. See Ocean-
Underwater.mat for an example.

HDRP

• Configure the ocean material for underwater rendering. Ensure that Double-Sided is enabled under Surface
Options on the ocean material so that the underside of the ocean surface renders. See Ocean-Underwater.mat
for an example.

URP

• Configure the ocean material for underwater rendering. In the Underwater section of the material params, ensure
Enabled is turned on and Cull Mode is set to Off so that the underside of the ocean surface renders. See Ocean-
Underwater.mat for an example.

• Add the Underwater Renderer component to your camera game object.

14.1.2 Parameters

• Mode: How the underwater effect (and ocean surface) is rendered:

– Full-Screen: Full screen effect.

– Portal: Renders the underwater effect and ocean surface from the geometry’s front-face and behind it.

– Volume: Renders the underwater effect and ocean surface from the geometry’s front-face to its back-face.

– Volume (Fly-Through): Renders the underwater effect and ocean surface from the geometry’s front-face
to its back-face - even from within the volume.

• Depth Fog Density Factor: Reduces the underwater depth fog density by a factor. Useful to reduce the intensity
of the fog independently from the ocean surface.

48 Chapter 14. Underwater

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

14.1.3 Detecting Above or Below Water

The OceanRenderer component has the ViewerHeightAboveWater property which can be accessed with
OceanRenderer.Instance.ViewerHeightAboveWater. It will return the signed height from the ocean surface
of the camera rendering the ocean. Internally this uses the SampleHeightHelper class which can be found in Sam-
plingHelpers.cs.

There is also the OceanSampleHeightEvents example component (requires example content to be imported) which uses
UnityEvents to provide a scriptless approach to triggering changes. Simply attach it to a game object, and it will invoke
a UnityEvent when the attached game object is above or below the ocean surface once per state change. A common
use case is to use it to trigger different audio when above or below the surface.

14.1.4 Portals & Volumes

Preview

This feature is in preview and may change in the future.

The underwater effect can be rendered from a provided mesh which will effectively become a portal (2D) or volume
(3D). Change the Mode property to one of your choosing and set the Volume Geometry to a Mesh Filter (it will use its
transform). This feature also clips the ocean surface to match. A common use case would be a window on a boat.

14.1.5 Underwater Shader API

Preview

This feature is in preview and may change in the future.

The underwater effect uses opaque depth and thus will not render correctly for transparent objects. Too much fog will
be applied as it is as if the transparent object does not exist.

The most effective approach is to render the transparent objects after the underwater effect and apply the underwater
effect as part of the shader for the transparent object (basically the same way Unity fog is applied).

The Shader API needs to be enabled on the Underwater Renderer (located under the Shader API heading).

BIRP

Once the Shader API is enabled, the underwater effect will be rendered before the transparent pass instead of after
it, and the global shader properties will be populated. This means that when a transparent object is rendered, it will
already have underwater fog behind it. It is then just a matter of applying the underwater fog to the transparent object.

Example

We have an example Surface Shader which you can use as a reference:
Crest/Crest-Examples/Shared/Shaders/ExampleUnderwaterTransparentSurfaceShader.shader

Furthermore, you can view the shader in action in the Transparent Object Underwater example in the Examples scene.

Setting up a shader can be broken down to the following:

14.1. Underwater Renderer 49

https://docs.unity3d.com/2020.3/Documentation/Manual/UnityEvents.html

Crest, Release 4.17

1. Including our includes file:
Crest/Crest/Shaders/Underwater/UnderwaterEffectIncludes.hlsl

2. Adding optional keywords (see example shader)

3. Use the CrestApplyUnderwaterFog function to apply the fog to the final color

Here is the important part from ExampleUnderwaterTransparentSurfaceShader.shader:

float2 positionNDC = IN.screenPos.xy / IN.screenPos.w;
float deviceDepth = IN.screenPos.z / IN.screenPos.w;

if (!CrestApplyUnderwaterFog(positionNDC, IN.worldPos, deviceDepth, _FogMultiplier,␣
→˓color.rgb))
{

UNITY_APPLY_FOG(IN.fogCoord, color);
}

HDRP

Once the Shader API is enabled, any transparent object in the correct layer and using a modified shader (more on
that later) will have its above water pixels rendered in the transparent pass and below water pixels rendered after the
underwater pass.

In a perfect world, we would render the underwater pass before the transparent pass, and then apply the underwater
effect to the final color of each transparent object using the CrestNodeApplyUnderWaterFog node. But Shader Graph
does not allow modification of the final color.

The workaround is in the example node CrestNodeApplyUnderwaterFogExample. This node uses the CrestNodeAp-
plyUnderWaterFog node and does a few things to get around this problem:

• Apply the underwater effect only to the Emission input to bypass Unity’s lighting

• Reduce the alpha and the color by distance from the camera

The end result is that the effect is inconsistent with the underwater pass. Despite that we believe it is a decent enough
approximation until Unity improves this area.

Example

We have an example Surface Shader which you can use as a reference:
Crest/Crest-Examples/Shared/Shaders/LitTransparentWithUnderwaterFog.shadergraph

Furthermore, you can view the shader in action in the Transparent Object Underwater example in the Examples scene.

Setting up a graph can be broken down to the following:

1. Add optional keywords (see example graph)

2. Add the CrestNodeApplyUnderwaterFogExample node

3. Connect Fogged Color (and alpha) and Fogged Emission outputs to the Master Stack

4. Multiply Factor output with any properties except Ambient Occlusion

5. Enable Alpha Clipping

For best results using the Lit Shader graph:

50 Chapter 14. Underwater

https://docs.unity3d.com/Packages/com.unity.shadergraph@10.10/manual/Master-Stack.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Lit-Shader.html

Crest, Release 4.17

• Keep Preserve Specular Lighting disabled as this will cause the object to be visible from any distance

• Do not enable Receive Fog as this will write over the emission and thus underwater fog

• Be mindful of what features on the Shader Graph you enable as it might affect the underwater fog

URP

Once the Shader API is enabled, any transparent object in the correct layer and using a modified shader (more on
that later) will have its above water pixels rendered in the transparent pass and below water pixels rendered after the
underwater pass.

In a perfect world, we would render the underwater pass before the transparent pass, and then apply the underwater
effect to the final color of each transparent object using the CrestNodeApplyUnderWaterFog node. But Shader Graph
does not allow modification of the final color.

The workaround is in the example node CrestNodeApplyUnderwaterFogExample. This node uses the CrestNodeAp-
plyUnderWaterFog node and does a few things to get around this problem:

• Apply the underwater effect only to the Emission input to bypass Unity’s lighting

• Reduce the alpha and the color by distance from the camera

The end result is that the effect is inconsistent with the underwater pass. Despite that we believe it is a decent enough
approximation until Unity improves this area.

Example

We have an example Surface Shader which you can use as a reference:
Crest/Crest-Examples/Shared/Shaders/LitTransparentWithUnderwaterFog.shadergraph

Furthermore, you can view the shader in action in the Transparent Object Underwater example in the Examples scene.

Setting up a graph can be broken down to the following:

1. Add optional keywords (see example graph)

2. Add the CrestNodeApplyUnderwaterFogExample node

3. Connect Fogged Color (and alpha) and Fogged Emission outputs to the Master Stack

4. Multiply Factor output with any properties except Ambient Occlusion

5. Enable Alpha Clipping

14.2 Underwater Curtain BIRP URP

Deprecated

The Underwater Curtain will be removed in a future Crest version. It has been replaced by the Underwater Renderer.

14.2. Underwater Curtain BIRP URP 51

https://docs.unity3d.com/Packages/com.unity.shadergraph@10.10/manual/Master-Stack.html

Crest, Release 4.17

14.2.1 Setup

• Configure the ocean material for underwater rendering. In the Underwater section of the material params, ensure
Enabled is turned on and Cull Mode is set to Off so that the underside of the ocean surface renders. See Ocean-
Underwater.mat for an example.

• Place UnderWaterCurtainGeom and UnderWaterMeniscus prefabs under the camera (with cleared transform).

14.3 Underwater Post-Process HDRP

Deprecated

The Underwater Post-Process will be removed in a future Crest version. It has been replaced by the Underwater
Renderer.

Renders the underwater effect at the beginning of the post-processing stack.

14.3.1 Setup

Steps to set up underwater:

1. Ensure Crest is properly set up and working before proceeding.

2. Enable Custom Pass on the HDRP Asset and ensure that Custom pass on the camera’s Frame Settings is not
disabled.

3. Add the custom post-process (Crest.UnderwaterPostProcessHDRP) to the Before TAA list. See the Custom Post
Process documentation.

4. Add the Crest/Underwater Volume Component.

• Please learn how to use the Volume Framework before proceeding as covering this is beyond the scope of
our documentation:

https://www.youtube.com/watch?v=vczkfjLoPf8

Fig. 14.1: Adding Volumes to HDRP (Tutorial)

5. Configure the ocean material for underwater rendering. Ensure that Double-Sided is enabled under Surface
Options on the ocean material so that the underside of the ocean surface renders. See Ocean-Underwater.mat
for an example.

52 Chapter 14. Underwater

https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/HDRP-Asset.html#rendering
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Frame-Settings.html#rendering
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Custom-Post-Process.html#effect-ordering
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Custom-Post-Process.html#effect-ordering
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.10/manual/Volume-Components.html

CHAPTER

FIFTEEN

COLLISION SHAPE AND BUOYANCY PHYSICS

15.1 Collision Shape

The system has a few paths for computing information about the water surface such as height, displacement, flow and
surface velocity. These paths are covered in the following subsections, and are configured on the Animated Waves Sim
Settings, assigned to the OceanRenderer script, using the Collision Source dropdown.

The system supports sampling collision at different resolutions. The query functions have a parameter Min Spatial
Length which is used to indicate how much detail is desired. Wavelengths smaller than half of this min spatial length
will be excluded from consideration.

To simplify the code required to get the ocean height or other data from C#, two helpers are provided, Sample-
HeightHelper and SampleFlowHelper. Use of these is demonstrated in the example content.

Research

We use a technique called Fixed Point Iteration to calculate the water height. We gave a talk at GDC about this technique
which may be useful to learn more: https://www.gdcvault.com/play/1023011/Fixed-Point-Iteration-A-Simple.

The Visualise Collision Area debug component is useful for visualising the collision shape for comparison against the
render surface. It draws debug line crosses in the Scene View around the position of the component.

15.1.1 Collision API Usage

The collision providers built intout our system perform queries asynchronously; queries are offloaded to the GPU or to
spare CPU cores for processing. This has a few non-trivial impacts on how the query API must be used.

Firstly, queries need to be registered with an ID so that the results can be tracked and retrieved later. This ID needs to
be globally unique, and therefore should be acquired by calling GetHashCode() on an object/component which will be
guaranteed to be unique. A primary reason why SampleHeightHelper is useful is that it is an object in itself and there
can pass its own ID, hiding this complexity from the user.

Important: Queries should only be made once per frame from an owner - querying a second time using the same ID
will stomp over the last query points.

Secondly, even if only a one-time query of the height is needed, the query function should be called every frame until it
indicates that the results were successfully retrieved. See SampleHeightHelper and its usages in the code - its Sample()
function should be called until it returns true. Posting the query and polling for its result are done through the same
function.

53

https://www.gdcvault.com/play/1023011/Fixed-Point-Iteration-A-Simple

Crest, Release 4.17

Finally due to the above properties, the number of query points posted from a particular owner should be kept consistent
across frames. The helper classes always submit a fixed number of points this frame, so satisfy this criteria.

15.1.2 Compute Shape Queries (GPU)

This is the default and recommended choice for when a GPU is present. Query positions are uploaded to a compute
shader which then samples the ocean data and returns the desired results. The result of the query accurately tracks the
height of the surface, including all wave components and depth caches and other Crest features.

15.1.3 Baked FFT Data (CPU)

Preview

This feature is in preview and may change in the future.

In scenarios where a GPU is not present such as for headless servers, a CPU option is available.

To use this feature, select a Shape FFT component that is generating the waves in a scene and enable the Enable Baked
Collision. Next configure the following options:

• Time Resolution - Frames per second of baked data. Larger values may help the collision track the surface
closely at the cost of more frames and increase baked data size.

• Smallest Wavelength Required - Smallest wavelength required in collision. To preview the effect of this, dis-
able power sliders in spectrum for smaller values than this number. Smaller values require more resolution and
increase baked data size.

• Time Loop Length - FFT waves will loop with a period of this many seconds. Smaller values decrease data size
but can make waves visibly repetitive.

Next click Bake to asset and assign to current settings and select a path and filename for the result. After the bake
completes the current active Animated Waves Sim Settings will be configured to use this data.

Important: There are currently a few key limitations of this approach:

• Only a single set of waves from one Shape FFT component is supported. This collision does not support multiple
sets of waves.

• The Depth Cache components are not supported. In order to get a one to one match between the visuals and the
collision data, depth caches should not be used.

• Varying water levels such as rivers flowing down a gradient or lakes at different altitudes is not supported. This
feature assumes a fixed sea level for the whole scene.

Sponsor

Sponsoring us will help increase our development bandwidth which could work towards solving the aforementioned
limitations.

Trello Card

Sponsor Us

54 Chapter 15. Collision Shape and Buoyancy Physics

https://trello.com/c/EJCQhvsL
https://github.com/sponsors/wave-harmonic?o=esb

Crest, Release 4.17

15.1.4 Gerstner Waves CPU

Deprecated

The Shape Gerstner Batched component is deprecated which supported this option.

This collision option is serviced directly by the Shape Gerstner Batched component which implements the IColl-
Provider interface, check this interface to see functionality. This sums over all waves to compute displacements, nor-
mals, velocities, etc. In contrast to the displacement textures the horizontal range of this collision source is unlimited.

A drawback of this approach is the CPU performance cost of evaluating the waves. It also does not include wave
attenuation from water depth or any custom rendered shape. A final limitation is the current system finds the first
Shape Gerstner Batched component in the scene which may or may not be the correct one. The system does not
support cross blending of multiple scripts.

15.2 Buoyancy

Note: Buoyancy physics for boats is not a core focus of Crest. For a professional physics solution we recommend the
DWP2 (Dynamic Water Physics 2) asset which is compatible with Crest.

With that said, we do provide rudimentary physics scripts.

SimpleFloatingObject is a simple buoyancy script that attempts to match the object position and rotation with the
surface height and normal. This can work well enough for small water craft that don’t need perfect floating behaviour,
or floating objects such as buoys, barrels, etc.

BoatProbes is a more advanced implementation that computes buoyancy forces at a number of ForcePoints and uses
these to apply force and torque to the object. This gives more accurate results at the cost of more queries.

BoatAlignNormal is a rudimentary boat physics emulator that attaches an engine and rudder to SimpleFloatingObject.
It is not recommended for cases where high animation quality is required.

15.2. Buoyancy 55

https://assetstore.unity.com/packages/tools/physics/dynamic-water-physics-2-147990?aid=1011lic2K

Crest, Release 4.17

56 Chapter 15. Collision Shape and Buoyancy Physics

CHAPTER

SIXTEEN

TIME CONTROL

By default, Crest uses the current game time given by Time.time when simulating and rendering the water. In some
situations it is useful to control this time, such as an in-game pause or to synchronise wave conditions over a network.
This is achieved through what we call TimeProviders, and a few use cases are described below.

Note: The Dynamic Waves simulation must progress frame by frame and can not be set to use a specific time, and
also cannot be synchronised accurately over a network.

16.1 Supporting Pause

One way to pause time is to set Time.timeScale to 0. In many cases it is desirable to leave Time.timeScale untouched
so that animations continue to play, and instead pause only the water. To achieve this, attach a TimeProviderCustom
component to a GameObject and assign it to the Time Provider parameter on the OceanRenderer component. Then
time can be paused by setting the _paused variable on the TimeProviderCustom component to false.

The TimeProviderCustom also allows driving any time to the system which may give more flexibility for specific use
cases.

A final alternative option is to create a new class that implements the ITimeProvider interface and call OceanRen-
derer.Instance.PushTimeProvider() to apply it to the system.

16.2 Network Synchronisation

A requirement in networked games is to have a common sense of time across all clients. This can be specified using
an offset between the clients Time.time and that of a server.

This is supported by attaching a TimeProviderNetworked.cs component to a GameObject, assigning it to
the Time Provider parameter on the OceanRenderer component, and at run-time setting TimeProviderNet-
worked.TimeOffsetToServer to the time difference between the client and the server.

If using the Mirror network system, set this property to the network time offset.

If the server needs the water shape to run physics but does not have a GPU then we have a CPU path, see Baked FFT
Data (CPU). Different server conditions can be emulated in Editor using the Force Batch Mode and Force No GPU
toggles on the OceanRenderer.

Note that dynamic waves are not synchronised across the network and should not be relied upon in multiplayer projects.

57

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Time-time.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Time-timeScale.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Time-timeScale.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Time-time.html
https://assetstore.unity.com/packages/tools/network/mirror-129321?aid=1011lic2K
https://mirror-networking.com/docs/api/Mirror.NetworkTime.html#Mirror_NetworkTime_offset

Crest, Release 4.17

16.3 Timelines and Cutscenes

One use case for this is for cutscenes/timelines when the waves conditions must be known in advance and repeatable.
For this case you may attach a Cutscene Time Provider component to a GameObject and assign it to the Ocean Renderer
component. This component will take the time from a Playable Director component which plays a cutscene Timeline.
Alternatively, a Time Provider Custom component can be used to feed any time into the system, and this time value
can be keyframed, giving complete control over timing.

58 Chapter 16. Time Control

https://docs.unity3d.com/Packages/com.unity.timeline@1.5/manual/play_director.html
https://docs.unity3d.com/Packages/com.unity.timeline@1.5/manual/tl_about.html

CHAPTER

SEVENTEEN

OPEN WORLDS

Crest follows the camera so it is inheritently suitable for open worlds, but there will be engine issues to account for.

17.1 Floating Origin

Crest has support for ‘floating origin’ functionality, based on code from the Unity Community Wiki. See the Floating
Origin wiki page for an overview and original code.

By default the FloatingOrigin script will call FindObjectsOfType() for a few different component types, which is a
notoriously expensive operation. It is possible to provide custom lists of components to the “override” fields, either by
hand or programmatically, to avoid searching the entire scene(s) for the components. Managing these lists at run-time
is left to the user.

17.1.1 Stable World Shifts

Tip: Not changing the threshold default value is the simplest approach to stable world shifts.

To avoid popping in the waves, the threshold needs to be set to WaveResolution x LargestWavelength. The WaveReso-
lution is on the Shape component (Shape FFT or Shape Gerstner) as just Resolution. The LargestWaveLength can be
found on the Ocean Wave Spectrum (the sliders with numbers from 0.0625 to 512) - find the largest number you are
using.

For example, a Shape FFT with a resolution of 16 and a largest wavelength of 256 will require a threshold value at a
minimum of 4,096 to have stable shifts. You could halve this number once at the cost of some instability, but anything
low will have very noticeable shifts.

59

https://wiki.unity3d.com/index.php/Floating_Origin
https://wiki.unity3d.com/index.php/Floating_Origin

Crest, Release 4.17

60 Chapter 17. Open Worlds

CHAPTER

EIGHTEEN

WATERCRAFT

Note: Buoyancy physics for boats is not a core focus of Crest. For a professional physics solution we recommend the
DWP2 asset which is compatible with Crest.

18.1 Boats

18.1.1 Adding Boats

This section describes the simplest way to add a boat, including buoyancy and wakes, to your project.

Setting up a boat with physics can be a dark art. The authors recommend duplicating and modifying one of the existing
boat prefabs, and proceeding slowly and carefully as follows:

1. Pick an existing boat to replace. Only use BoatAlignNormal if good floating behaviour is not important, as
mentioned above. The best choice is usually BoatProbes.

2. Duplicate the prefab of the one you want to replace, such as crest/Assets/Crest/Crest-
Examples/BoatDev/Data/BoatProbes.prefab

3. Remove the render meshes from the prefab, and add the render mesh for your boat. We recommend lining up the
meshes roughly.

4. Switch out the collision shape as desired. Some people report issues if the are multiple overlapping physics
collision primitives (or multiple rigidbodies which should never be the case). We recommend keeping things as
simple as possible and using only one collider if possible.

5. We recommend placing the render mesh so its approximate center of mass matches the center of the collider and
is at the center of the boat transform. Put differently, we usually try to eliminate complex hierarchies or having
nested non-zero’d transforms whenever possible within the boat hierarchy, at least on or above physical parts.

6. If you have followed these steps you will have a new boat visual mesh and collider, with the old rigidbody and
boat script. You can then modify the physics settings to move the behaviour towards how you want it to be.

7. The mass and drag settings on the boat scripts and rigdibody help to give a feeling of weight.

8. Set the boat dimension:

• BoatProbes: Set the Min Spatial Length param to the width of the boat.

• BoatAlignNormal: Set the Boat Width and Boat Length params to the width and length of the boat.

• If, even after experimenting with the mass and drag, the boat is responding too much to small waves,
increase these parameters (try doubling or quadrupling at first and then compensate).

9. There are power settings for engine turning which also help to give a feeling of weight.

61

https://assetstore.unity.com/packages/tools/physics/dynamic-water-physics-2-147990?aid=1011lic2K

Crest, Release 4.17

10. The dynamic wave interaction is driven by the object in the boat hierarchy called SphereWaterInteraction. It can
be scaled to match the dimensions of the boat. The Weight param controls the strength of the interaction.

The above steps should maintain a working boat throughout - we recommend testing after each step to catch issues
early.

18.1.2 Adding Buoyancy

The simplest method to adding buoyancy is detailed above. Further details about buoyancy components can be found
in the Buoyancy section.

18.1.3 Adding Wakes

The Sphere Water Interaction component is used to add wakes. See Adding Interaction Forces section for more infor-
mation on this component.

18.1.4 Removing Water From Inside Boat

There are various methods to removing water from Crest detailed on the Water Exclusion page.

62 Chapter 18. Watercraft

CHAPTER

NINETEEN

PERFORMANCE GUIDE

The foundation of Crest is architected for performance from the ground up with an innovative LOD system. It is
tweaked to achieve a good balance between quality and performance in the general case, but getting the most out of the
system requires tweaking the parameters for the particular use case. These are documented below.

19.1 Quality parameters

These are available for tweaking out of the box and should be explored on every project:

• See Ocean Construction Parameters for parameters that directly control how much detail is in the ocean, and
therefore the work required to update and render it. These are the primary quality settings from a performance
point of view.

• The ocean shader has accrued a number of features and has become a reasonably heavy shader. Where possible
these are on toggles and can be disabled, which will help the rendering cost (see Material Parameters). A
potential idea would be to change materials on the fly from script, for example to switch to a deep water material
when out at sea to avoid shallow water calculations

• Our wave system uses an inefficient approach to generate the waves to avoid an incompatibility in older hardware.
If you are shipping on a limited set of hardware which you can test the waves on, you may try disabling the Ping
pong combine option in the Animated Wave Settings asset.

19.2 Mobile Performance

Mobile is not the primary target for Crest, but the following are some hints on getting better performance:

• Crest can be draw call heavy which mobile platforms can be sensitive to. Together, reducing the LOD count and
increasing the Min Scale can significantly reduce draw calls.

• The Underwater Renderer can be very expensive as it will render the water mesh a second time to create a mask.
Even though it has been deprecated, try using the Underwater Curtain instead.

• Disabling Transparency on the ocean material will benefit platforms that use tile-based renderers.

63

Crest, Release 4.17

64 Chapter 19. Performance Guide

CHAPTER

TWENTY

SYSTEM NOTES

We have published details of the algorithms and approaches we use. See the following publications:

• Crest: Novel Ocean Rendering Techniques in an Open Source Framework, Advances in Real-Time Rendering in
Games, ACM SIGGRAPH 2017 courses http://advances.realtimerendering.com/s2017/index.html

• Multi-resolution Ocean Rendering in Crest Ocean System, Advances in Real-Time Rendering in Games, ACM
SIGGRAPH 2019 courses http://advances.realtimerendering.com/s2019/index.htm

20.1 Core Data Structure

The backbone of Crest is an efficient Level Of Detail (LOD) representation for data that drives the rendering, such
as surface shape/displacements, foam values, shadowing data, water depth, and others. This data is stored in a multi-
resolution format, namely cascaded textures that are centered at the viewer. This data is generated and then sampled
when the ocean surface geometry is rendered. This is all done on the GPU using a command buffer constructed each
frame by BuildCommandBuffer.

Let’s study one of the LOD data types in more detail. The surface shape is generated by the Animated Waves LOD
Data, which maintains a set of displacement textures which describe the surface shape. A top down view of these
textures laid out in the world looks as follows:

65

http://advances.realtimerendering.com/s2017/index.html
http://advances.realtimerendering.com/s2019/index.htm

Crest, Release 4.17

Each LOD is the same resolution (256x256 here), configured on the OceanRenderer script. In this example the largest
LOD covers a large area (4km squared), and the most detail LOD provides plenty of resolution close to the viewer.
These textures are visualised in the Debug GUI on the right hand side of the screen:

66 Chapter 20. System Notes

Crest, Release 4.17

In the above screenshot the foam data is also visualised (red textures), and the scale of each LOD is clearly visible by
looking at the data contained within. In the rendering each LOD is given a false colour which shows how the LODs
are arranged around the viewer and how they are scaled. Notice also the smooth blend between LODs - LOD data is
always interpolated using this blend factor so that there are never pops are hard edges between different resolutions.

In this example the LODs cover a large area in the world with a very modest amount of data. To put this in perspective,
the entire LOD chain in this case could be packed into a small texel area:

A final feature of the LOD system is that the LODs change scale with the viewpoint. From an elevated perspective,
horizontal range is more important than fine wave details, and the opposite is true when near the surface. The Ocean-
Renderer has min and max scale settings to set limits on this dynamic range.

When rendering the ocean, the various LOD data are sample for each vert and the vert is displaced. This means that
the data is carried with the waves away from its rest position. For some data like wave foam this is fine and desirable.

20.1. Core Data Structure 67

Crest, Release 4.17

For other data such as the depth to the ocean floor, this is not a quantity that should move around with the waves and
this can currently cause issues, such as shallow water appearing to move with the waves as in #96.

20.2 Implementation Notes

On startup, the OceanRenderer script initialises the ocean system and asks the OceanBuilder script to build the ocean
surface. As can be seen by inspecting the ocean at run-time, the surface is composed of concentric rings of geometry
tiles. Each ring is given a different power of 2 scale.

At run-time, the ocean system updates its state in LateUpdate, after game state update and animation, etc. OceanRen-
derer updates before other scripts and first calculates a position and scale for the ocean. The ocean GameObject is
placed at sea level under the viewer. A horizontal scale is computed for the ocean based on the viewer height, as well
as a _viewerAltitudeLevelAlpha that captures where the camera is between the current scale and the next scale (×2),
and allows a smooth transition between scales to be achieved.

Next any active ocean data are updated, such as animated waves, simulated foam, simulated waves, etc. The data can
be visualised on screen if the OceanDebugGUI script from the example content is present in the scene, and if the Show
shape data on screen toggle is enabled. As one of the ocean data types, the ocean shape is generated using an FFT
and copied into the animated waves data. Each wave component is rendered into the shape LOD that is appropriate for
the wavelength, to prevent over- or under- sampling and maximize efficiency. A final pass combines the shape results
from the different FFT components together. Disable the Shape combine pass option on the OceanDebugGUI to see
the shape contents before this pass.

Finally BuildCommandBuffer constructs a command buffer to execute the ocean update on the GPU early in the frame
before the graphics queue starts. See the BuildCommandBuffer code for the update scheduling and logic.

The ocean geometry is rendered by Unity as part of the graphics queue, and uses the Crest/Ocean shader. The vertex
shader snaps the verts to grid positions to make them stable. It then computes a lodAlpha which starts at 0 for the
inside of the LOD and becomes 1 at the outer edge. It is computed from taxicab distance as noted in the course. This
value is used to drive the vertex layout transition, to enable a seamless match between the two. The vertex shader
then samples any required ocean data for the current and next LOD scales and uses lodAlpha to interpolate them for a
smooth transition across displacement textures. Finally, it passes the LOD geometry scale and lodAlpha to the ocean
fragment shader.

The fragment shader samples normal and foam maps at 2 different scales, both proportional to the current and next
LOD scales, and then interpolates the result using lodAlpha for a smooth transition. It combines the normal map with
surface normals computed directly from the displacement texture.

68 Chapter 20. System Notes

https://github.com/wave-harmonic/crest/issues/96

CHAPTER

TWENTYONE

RENDERING NOTES

21.1 Transparency

Crest is rendered in a standard way for water shaders - in the transparent pass and refracts the scene. The refraction
is implemented by sampling the camera’s colour texture which has opaque surfaces only. It writes to the depth buffer
during rendering to ensure overlapping waves are sorted correctly to the camera. The rendering of other transparent
objects depends on the case, see headings below. Knowledge of render pipeline features, rendering order and shaders
is required to solving incompatibilities.

21.1.1 Transparent Object In Front Of Ocean Surface

Normal transparent shaders should blend correctly in front of the water surface. However this will not work correctly
for refractive objects. Crest will not be available in the camera’s colour texture when other refractive objects sample
from it, as the camera colour texture will only contain opaque surfaces. The end result is Crest not being visible behind
the refractive object.

21.1.2 Transparent Object Behind The Ocean Surface

Alpha blend and refractive shaders will not render behind the water surface. Other transparent objects will not be part
of the camera’s colour texture when Crest samples from it. The end result is transparent objects not being visible behind
Crest.

On the other hand, alpha test / alpha cutout shaders are effectively opaque from a rendering point of view and may be
usable in some scenarios.

21.1.3 Transparent Object Underwater

Note: See the Underwater Shader API (in preview) for a more accurate solution.

This is tricky because the underwater effect uses the opaque scene depths in order to render the water fog, which will
not include transparents.

The following only applies to the Underwater Renderer.

BIRP

Transparents will need to be rendered after the underwater effect. The underwater effect is rendered at the Camer-
aEvent.AfterForwardAlpha event. They can be rendered after the underwater effect using Command Buffers. Trans-
parents rendered after the underwater effect will not have the underwater water fog shading applied to them. The effect

69

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Rendering.CameraEvent.AfterForwardAlpha.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Rendering.CameraEvent.AfterForwardAlpha.html
https://docs.unity3d.com/2020.3/Documentation/Manual//GraphicsCommandBuffers.html

Crest, Release 4.17

of the fog either needs to be faked by simply ramping the opacity down to 0 based on distance from the camera, or the
water fog shader code needs to be included and called from the transparent shader.

HDRP

The Submarine example scene demonstrates an underwater transparent effect - the bubbles from the propellors when
the submarine is in motion. This effect is from the Bubbles Propellor GameObject, which is assigned a specific
layer TransparentFX. The particles need to be rendered between the underwater and post-processing passes which is
achieved using a Custom Pass Volume component attached to the CustomPassForUnderwaterParticles GameObject.
It is configured to render the TransparentFX layer in the Before Post Process injection point with a priority of “-1”
(which orders it to render after the underwater pass). Transparents rendered after the underwater effect will not have
the underwater water fog shading applied to them. The effect of the fog either needs to be faked by simply ramping
the opacity down to 0 based on distance from the camera, or the water fog shader code needs to be included and called
from the transparent shader. The shader UnderwaterEffectPassHDRP.shader is a good reference for calculating the
underwater effect. This will require various parameters on the shader like fog density and others.

URP

Transparents will need to be rendered after the underwater effect. The underwater effect is rendered at the BeforeRen-
deringPostProcessing event. They can be rendered after the underwater effect using the Render Objects Render Feature
set to BeforeRenderingPostProcessing. Transparents rendered after the underwater effect will not have the underwater
water fog shading applied to them. The effect of the fog either needs to be faked by simply ramping the opacity down to
0 based on distance from the camera, or the water fog shader code needs to be included and called from the transparent
shader.

21.2 Render Order BIRP URP

A typical render order for a frame is the following:

• Opaque geometry is rendered, writes to opaque depth buffer.

• Sky is rendered, probably at zfar with depth test enabled so it only renders outside the opaque surfaces.

• Frame colours and depth are copied out for use later in postprocessing.

• Ocean renders early in the transparent queue (queue = 2510).

– Queue = Geometry+510 BIRP. Queue = Transparent-100 URP.

– It samples the postprocessing colours and depths, to do refraction.

– It reads and writes from the frame depth buffer, to ensure waves are sorted correctly.

– It stomps over sky - sky is at zfar and will be fully fogged/obscured by the water volume.

• Particles and alpha render. If they have depth test enabled, they will clip against the surface.

• Postprocessing runs with the postprocessing depth and colours.

– If enabled, underwater postprocess constructs a screenspace mask for the ocean and uses it to draw the
underwater effect over the screen.

70 Chapter 21. Rendering Notes

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.10/manual/urp-renderer-feature-how-to-add.html

CHAPTER

TWENTYTWO

FREQUENTLY ASKED QUESTIONS

Why does the ocean not update smoothly in edit mode?

By default, the update speed is intentionally throttled by Unity to save power when in edit mode. To enable real-time
update, enable Animated Materials in the Scene View toggles:

See the Unity Documentation for more information.

Why aren’t my prefab mode edits not reflected in the scene view?

Crest does not support running in prefab mode which means dirty state in prefab mode will not be reflected in the scene
view. Save the prefab to see the changes.

Is Crest well suited for medium-to-low powered mobile devices?

Crest is built to be performant by design and has numerous quality/performance levers. However it is also built to be
very flexible and powerful and as such can not compete with a minimal, mobile-centric ocean renderer such as the one
in the BoatAttack project. Therefore we target Crest at PC/console platforms.

71

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

Which platforms does Crest support?

Testing occurs primarily on MacOS/Windows.

Firstly, make sure your target platform adheres to the Requirements.

We have users targeting the following platforms:

• Windows

• MacOS

• Linux *

• Playstation *

• Xbox *

• Switch * **

• iOS * **

• Android/Quest * **

* We do not have access to these platforms ourselves.
** Performance is a challenge on these platforms. Please see the previous question.

Crest also supports VR/XR Multi-Pass and Single Pass Instanced rendering.

For additional platform notes, see Platform Support.

Is Crest well suited for localised bodies of water such as lakes?

Yes, see Oceans, Rivers and Lakes for documentation.

Can Crest work with multiplayer?

Yes, the animated waves are deterministic and can be synchronised across the network. For more information see
Network Synchronisation.

Note however that the dynamic wave sim is not synchronized over the network and should not be relied upon in net-
worked situations.

Errors are present in the log that report Kernel ‘xxx.yyy’ not found

Unity sometimes gets confused and needs assets reimported. This can be done by clicking the Crest root folder in the
Project window and clicking Reimport. Alternatively the Library folder can be removed from the project root which
will force all assets to reimport.

72 Chapter 22. Frequently Asked Questions

https://github.com/wave-harmonic/crest/wiki/Platform-Support

Crest, Release 4.17

Can I push the ocean below the terrain?

Yes, this is demonstrated in Fig. 8.1.

Does Crest support multiple viewpoints?

Currently only a single ocean instance can be created, and only one viewpoint is supported at a time. We hope to
support multiple simultaneous views in the future.

Can I sample the water height at a position from C#?

Yes, see usages of SampleHeightHelper class in SamplingHelpers.cs. The OceanRenderer uses this helper to get the
height of the viewer above the water, and makes this viewer height available via the ViewerHeightAboveWater property.

Can I trigger something when an object is above or under the ocean
surface without any scripting knowledge?

Yes. Please see Detecting Above or Below Water.

Does Crest support orthographic projection?

Yes. Please see Orthographic Projection.

How do I disable underwater fog rendering in the scene view?

You can enable/disable rendering in the scene view by toggling fog in the scene view control bar.

Can the density of the fog in the water be reduced?

The density of the fog underwater can be controlled using the Fog Density parameter on the ocean material. This
applies to both above water and underwater. The Depth Fog Density Factor on the Underwater Renderer can reduce
the density of the fog for the underwater effect.

Can I push the ocean below the terrain? 73

https://docs.unity3d.com/2020.3/Documentation/Manual/ViewModes.html

Crest, Release 4.17

Does Crest support third party sky assets? BIRP URP

We have heard of Crest users using TrueSky, AzureSky. These may require some code to be inserted into the ocean
shader - there is a comment referring to this, search Ocean.shader for ‘Azure’.

Please see the Community Contributions section in our Wiki for some integration solutions.

Can I remove water from inside my boat?

Yes, this is referred to as ‘clipping’ and is covered in section Clip Surface.

How to implement a swimming character?

As far as we know, existing character controller assets which support swimming do not support waves (they require a
volume for the water or physics mesh for the water surface). We have an efficient API to provide water heights, which
the character controller could use instead of a physics volume. Please request support for custom water height providers
to your favourite character controller asset dev.

Can I render transparent objects underwater?

See Transparent Object Underwater.

Can I render transparent objects in front of water?

See Transparent Object In Front Of Ocean Surface.

Can I render transparent objects behind the ocean surface?

See Transparent Object Behind The Ocean Surface.

74 Chapter 22. Frequently Asked Questions

https://github.com/wave-harmonic/crest/wiki

	Introduction
	Sponsorship
	Social

	Known Issues
	Unity Bugs
	Prefab Mode Not Supported

	Roadmap
	Release Notes
	4.17
	Changed
	Fixed
	Performance

	Initial Setup
	Requirements
	Importing Crest files into project
	Pipeline Setup
	Importing Crest
	Transparency

	Adding Crest to a Scene
	Frequent Setup Issues
	Errors present, or visual issues
	Compile errors in the log, not possible to enter play mode, visual issues in the scene
	Possible to enter play mode, but errors appear in the log at runtime that mention missing ‘kernels’
	Ocean framerate low in edit mode
	Ocean reflections/lighting/fog looks wrong HDRP
	Changes made in prefab mode are not reflected in the scene view

	Quick Start Guide
	Water Appearance
	Material Parameters
	Normals
	Scattering
	Subsurface Scattering
	Shallow Scattering
	Reflection Environment
	Add Directional Light
	Procedural Skybox
	Foam
	Foam 3D Lighting
	Foam Bubbles
	Transparency
	Caustics
	Underwater
	Flow

	Lighting
	General
	Reflections
	Planar Reflection Probes
	Screen-Space Reflections

	Refractions

	Foam
	Overview
	User Inputs
	Simulation Settings
	General Settings
	Wave foam / whitecaps
	Shoreline foam
	Developer Settings

	Shadows
	Custom Albedo
	Overview
	User Inputs

	Orthographic Projection
	Ocean Construction Parameters
	Advanced Ocean Parameters

	Water Inputs
	Input Modes
	Spline Mode
	Renderer Mode

	Water Exclusion
	Clip Surface
	Simulation Settings
	User Inputs
	Primitive Mode
	Geometry Mode

	Mask Underwater

	Waves
	Environmental Waves
	Wave Conditions
	Wave Placement
	Wave Manipulation
	Advanced Settings

	Dynamic Waves
	Overview
	Adding Interaction Forces
	Simulation Settings
	User Inputs

	Oceans, Rivers and Lakes
	Oceans
	Lakes
	Rivers

	Shorelines and Shallows
	Sea Floor Depth
	Setup
	Shoreline Foam
	Troubleshooting

	Shoreline Waves

	Tides and Currents
	Flow
	Overview
	User Inputs

	Tides

	Underwater
	Underwater Renderer
	Setup
	Parameters
	Detecting Above or Below Water
	Portals & Volumes
	Underwater Shader API

	Underwater Curtain BIRP URP
	Setup

	Underwater Post-Process HDRP
	Setup

	Collision Shape and Buoyancy Physics
	Collision Shape
	Collision API Usage
	Compute Shape Queries (GPU)
	Baked FFT Data (CPU)
	Gerstner Waves CPU

	Buoyancy

	Time Control
	Supporting Pause
	Network Synchronisation
	Timelines and Cutscenes

	Open Worlds
	Floating Origin
	Stable World Shifts

	Watercraft
	Boats
	Adding Boats
	Adding Buoyancy
	Adding Wakes
	Removing Water From Inside Boat

	Performance Guide
	Quality parameters
	Mobile Performance

	System Notes
	Core Data Structure
	Implementation Notes

	Rendering Notes
	Transparency
	Transparent Object In Front Of Ocean Surface
	Transparent Object Behind The Ocean Surface
	Transparent Object Underwater

	Render Order BIRP URP

	Frequently Asked Questions
	Why does the ocean not update smoothly in edit mode?
	Why aren’t my prefab mode edits not reflected in the scene view?
	Is Crest well suited for medium-to-low powered mobile devices?
	Which platforms does Crest support?
	Is Crest well suited for localised bodies of water such as lakes?
	Can Crest work with multiplayer?
	Errors are present in the log that report Kernel ‘xxx.yyy’ not found
	Can I push the ocean below the terrain?
	Does Crest support multiple viewpoints?
	Can I sample the water height at a position from C#?
	Can I trigger something when an object is above or under the ocean surface without any scripting knowledge?
	Does Crest support orthographic projection?
	How do I disable underwater fog rendering in the scene view?
	Can the density of the fog in the water be reduced?
	Does Crest support third party sky assets? BIRP URP
	Can I remove water from inside my boat?
	How to implement a swimming character?
	Can I render transparent objects underwater?
	Can I render transparent objects in front of water?
	Can I render transparent objects behind the ocean surface?

